Как сделать тахеометрическую съемку теодолитом

Понятие о тахеометрической съемке и современные приборы для ее проведения

Тахеометрическая съемка — один из видов топографической съемки, которая выполняется при помощи геодезических устройств — теодолитов и тахеометров. В буквальном смысле, слово «тахеометрия» с древнегреческого языка обозначает быстрое измерение. В основе тахеометрической съемки лежит замысел того, чтобы при разовом наведении прибора на рейку будет произведен расчет расстояния, а также горизонтальных и вертикальных углов или их превышения, тогда можно будет добиться высокой скорости выполнения задания.

Тахеометрами называются оптические теодолиты, которые автоматически позволяют находить превышения и горизонтальные положения на местности. Тахеометр в отличие от теодолита оборудован дальномером, благодаря которому появляется возможность измерять как углы, так и расстояния.

141960379 w640 h640 cst300r

Сущность метода тахеометрической съемки заключается в установлении точек, представляющих рельеф местности и очертания объектов. В месте каждой снимаемой точки, пользуясь способом полярных координат, находятся направление и угол наклона. Главной целью съемки является подготовка плана исходной местности.

Работа на станции при тахеометрической съемке

Данный абзац описывает порядок работы на станции. Естественно, всякий рассматриваемый объект индивидуален и этот процесс необходимо подогнать под конкретную ситуацию, однако, существует определенная последовательность действий, сопровождающая работы.

Для начала в точке съемки располагают штатив, закрепляют на нем прибор так, чтобы зрительная труба находилась на уровне глаз, центрируют теодолит и приводят его к горизонту, замеряют высоту от точки до устройства (обозначается буквой i). Далее, выполняется ориентирование на исходный пункт путем установки ноля лимба с учетом истинного или магнитного меридиана на какую-либо из смежных точек. В большинстве случаев ориентирование производится при круге лево.

Устройство наводится на измеряемую точку, по лимбу определяется направление, измеряется расстояние с использованием нитяного дальномера, далее по вертикальному кругу измеряется угол наклона.

Данные, полученные в ходе проведенных работ, должны заноситься в журнал, современные виды тахеометров способны сохранять их в память устройства или на внешние накопители.

Производство тахеометрической съемки

Перед началом проводится уплотнение имеющейся геодезической сети съемочными точками до такой плотности, которая будет обеспечивать на всей площади съемки тахеометрические ходы, соблюдая установленные требования, их отображает инструкция.

В основном работы выполняются из точек тахеометрических ходов, точки из которых производится съемка местности называют съемочными станциями, снимаемые точки – пикетами.

Полевые работы при тахеометрической съемке начинаются после вынесения на карту исследуемой местности тахеометрических ходов, станции обозначают с помощью деревянных либо металлических кольев, в зависимости от необходимости их долговечности.

Существуют два типа тахеометрических съемок – первый это съемка земельного участка, иначе называемая площадной и съемка, применяемая при линейном строительстве – маршрутная.

Маршрутная тахеометрическая съемка производится для проектирования линейных объектов: автомобильных дорог, трубопроводов, железнодорожных линий и т.д. На начальном этапе работ необходимо проложить теодолитный ход между станциями съемки. Далее, с каждой точки полярным способом отдельно замерить ситуационные пикеты – которые отображают контур ситуации и орографические – отображающие рельеф.

Места точек определяют на характерных участках рельефа данной территории. Для орографических пикетов определяют горизонтальные углы, углы наклона и расстояния, а для ситуационных расчет углов наклона не требуется. Реечные точки располагают равномерно и в достаточном количестве, чтобы они максимально описывали рельеф исследуемой территории.

В том случае, когда расстояние между точками превышает максимально допустимое (табл. 3), то прокладывается висячий ход от станции съемки, который по размерам не должен быть больше 500 метров и иметь не более 3 точек.

Замеры горизонтальных углов необходимо брать от линии нулевого направления, за нее принимают переднюю либо заднюю сторону хода. Для этого на каждой станции до того как снять пикеты нужно навести лимб прибора на переднюю или заднюю точку хода, совместив нулевую отметку первого верньера алидады с нулем на лимбе горизонтального круга. После этого на лимбе закрепляют алидаду и, ослабив фиксирующий винт лимба, визируют на необходимую точку хода. Затем, ослабив фиксирующий винт алидады горизонтального круга, визируют на пикеты.

В результате горизонтальными углами будут отсчеты, полученные по верньеру горизонтального круга. В конце съемки пикетов на каждой съемочной точке выполняют проверку лимба, визируя на переднюю или заднюю точку хода, где отсчет по первому верньеру не должен отличаться более чем на 2*t, где t-точность верньера.

При площадной съемке выполняют замкнутый ход, его стороны замеряют с помощью дальномера, а углы при круге лево (КЛ) и круге право (КП). Данные измерения записывают в полевом журнале. Стороны хода желательно наносить вблизи водораздельных линий, если сложно наметить их направления, то необходимо сделать съемку рельефа местности и после этого по горизонталям нанести водораздельные линии.

Расстояния между точками замкнутого хода не должны превышать допустимые (табл. 1), в противном случае необходимо добавлять диагональные ходы и проводить досъемку территории.

tablitsa 1 geo e1549613364613

Допустимые длины от точек тахеометрических ходов до пикетов и между ними указаны в таблице 2.

Tablitsa 2 geomiksПлотность пунктов съемки также должна отвечать требованиям (табл. 3). Поэтому перед началом работ проводят рекогносцировку снимаемой территории, полученная информация сопоставляется с абрисами соседних станций.

Tablitsa 3 geomiks
На каждом пикете необходимо выполнять абрисы (рис. 1) – это схематичные зарисовки с нанесением съемочных точек, условных знаков и направлением лимба. Абрисы показывают основную информацию об исследуемой территории, которую в дальнейшем применяют при составлении плана.

1111111111111111111

Рисунок 1 – абрис тахеометрической съемки

Если абрис максимально точно описывает ситуацию изучаемой местности, ход камеральных работ пройдет значительно быстрее.

Ошибки и меры предосторожности при тахеометрической съемке

Во время выполнения описываемых работ могут допускаться следующие ошибки: инструментальные погрешности, при перестановке и наведении прибора, ошибки по естественным причинам.

Когда перед началом работ прибор находится в состоянии регулировки, заданные заводом-изготовителем константы устройства должны быть проверены в полевых условиях путем фактического наблюдения. Это обязательное требование для измерений, так как точность при работах является основным критерием. Значения на мерной рейке должны четко прослеживаться, при любом несоответствии нужно внести необходимые коррективы.

Ошибки при манипуляциях с прибором в большинстве случаев зависят от квалификации рабочего, поэтому измерения необходимо проводить под надзором более опытного геодезиста.

Ошибки по естественным причинам могут возникать в следствие погодных условий таких, как ветер, туман, осадки и так далее, а также при рефракции света. Последняя ошибка является самой распространенной, ее причиной оказывается преломление лучей света при их прохождении через слои воздуха разной плотности. Для того, чтобы избежать этого, не рекомендуется проводить работы в середине дня.

Методы ухода за прибором и полезные советы

Камеральные работы при тахеометрической съемке

Камеральные работы при тахеометрической съемке выполняются в 4 этапа. На первом этапе работ проводится проверка полевых журналов, путем перерасчета полученных данных выполняется обработка результатов тахеометрической съемки. При обнаружении погрешностей их устраняют с помощью необходимых исправлений. Далее вычисляют плановые положения съемочных станций на поверхности и их высотные отметки. Прибавив к их отметкам высоту реечных точек определяют отметку пикетов.

По завершению вышеизложенных работ проводится составление плана тахеометрической съемки местности, с этой целью в нужном масштабе на него наносят пункты съемки и тахеометрические ходы, измеряют расстояния между ними для проверки. Полярным способом располагают на плане точки пикетов, рядом с ними указывают номер и отметку.

Руководствуясь абрисом наносят объекты, присутствующие на местности. Следующим шагом служит построение плана горизонталей по отметкам пикетов, для удобства горизонтали подписываются в разрывах, таким образом, чтобы верх цифр располагался в сторону повышения рельефа. Также они не должны перекрывать элементы, отмеченные на местности (дома, реки и так далее). В результате проведенных работ получают план исследуемой территории.

kameralnye raboty e1549610317978

Современные приборы для тахеометрической съемки

Благодаря электронным тахеометрам достигается автоматизация ведения тахеометрической съемки. Для этого рейку на пикете заменяет светоотражающая вешка, и при наведении на нее прибор можно использовать для измерения горизонтальных, вертикальных углов и расстояния. Он также интегрирован с микропроцессором и внутренней системой хранения данных.

Микропроцессор позволяет моментально получить нужные данные, а именно плановые координаты наблюдаемых точек, высоту объектов, расстояния между любыми двумя точками и другие. Данные, собранные и обработанные на тахеометре, могут быть загружены в компьютер для дальнейшей обработки.

Для примера рассмотрим компактный тахеометр Японской компании Sokkia, его вес всего 5,8 кг, схема с расположением частей представлена на рисунке 2.

image

Рисунок 2 – Схема электронного тахеометра Sokkia

1 – ручка для перемещения прибора; 2 – крепежный винт ручки; 3 – терминал ввода/вывода данных; 4 – отметка высоты тахеометра; 5 – аккумулятор; 6 – панель управления; 7 – зажим трегера; 8 – основание трегера; 9, 10 – регулировочные винты; 11 – круглый уровень; 12 – дисплей; 13 – линза объектива; 14 – компас; 15, 16, 17 – устройства оптического отвеса; 18 – винт закрепляющий горизонтальный круг; 19 – микрометренный винт горизонтального круга; 20 – разъем для ввода/вывода данных; 21 – разъем внешнего источника питания; 22 – уровень трегера; 23 – винт регулировки уровня трегера; 24 – микрометренный винт вертикального круга; 25 – винт закрепляющий вертикальный круг; 26 – окуляр зрительной трубы; 27 – кольцо фокусировки зрительной трубы; 28 – визир; 29 – отметка центра устройства.

Трегером называется приспособление на котором закрепляется прибор.

Дальность измерений этого прибора колеблется от 2,8 до 4,2 км, а точность от 5 до 10 мм на километр измерения. Точность измерения углов варьируется от 2 до 6 секунд.

Тахеометр оснащен мощным процессором, который с помощью измеренного вертикального, горизонтального угла и наклонного расстояния вычисляет горизонтальное расстояние и координаты X, Y, Z. Если выставлены значения атмосферного давления и температуры, то при обработке данных не нужно проводить соответствующие коррекции. На дисплее устройства можно отображать расстояния, углы, разницу высот и все три координаты наблюдаемых точек.

Данные по каждой точке могут храниться в электронном журнале, емкость которого составляет от 2000 до 4000 пунктов, информацию можно выгрузить на компьютер и использовать журнал повторно.

Точечные данные, загруженные на компьютер, могут быть обработаны в программах GEOMIX, AutoCad, которые позволяют строить контура на любом заданном интервале и поперечные сечения вдоль указанных линий.

Прибор может успешно применяться в строительстве, маркшейдерском деле, землеустройстве, топографии, проведении изысканий и во многом другом.

Ниже приведены основные преимущества электронного тахеометра по сравнению с обычными геодезическими приборами:

Однако, необходимо своевременно проводить проверку устройства на заранее подготовленных пунктах. В этом случае электронный тахеометр совместно с компьютером дает возможность максимально автоматизировать процесс работ.

Из недостатков стоит отметить то, что при камеральных работах отсутствует возможность своевременного обнаружения ошибок, допущенных во время съемки. Устранить их можно лишь путем сравнения плана с местностью на которой производились работы.

Источник

Как пользоваться, работать теодолитом

Т еодолит стал первым инструментом, изобретенным человечеством, позволяющий измерять горизонтальные и вертикальные углы. На сегодняшний день он вместе с нивелиром уверенно конкурирует со сложными электронными собратьями, обеспечивая достаточную точность полученных значений. Теодолит неприхотлив, прост в обращении, стоит же на порядок ниже → тахеометра (по ссылке рассказано как работать тахеометром), который является его старшим, более продвинутым собратом. Проведение сложных измерений с помощью теодолита невозможно без вычислительной техники и специальных знаний, а вот уметь определить горизонтальный и вертикальный углы, определить высоту строения, разбить прямоугольник или проверить правильность разбивки осей здания должен уметь каждый строитель. Тем более, как пользоваться теодолитом, при некоторой доле старания, может разобраться даже не специалист.

Содержание:
1. Устройство и принцип работы теодолита.
2. Установка теодолита, подготовка к работе (видео).
3. Взятие отсчётов теодолитом.
3. Точность снятия отсчётов.
4. Определение высоты сооружения теодолитом (+ видео).
5. Измерение горизонтального угла теодолитом (+ видео).
6. Полярный способ съёмки теодолитом.
7. Погрешность замкнутого теодолитного хода, невязка.
8. Съёмка теодолитом методом створов и перпендикуляров.
9. Определение расстояния теодолитом с помощью дальномерной рейки.
10. Геодезия, видеолекция «Теодолитная, тахеометрическая съёмки».

Видео-версия статьи

Устройство и принцип работы теодолита

Основа теодолита — зрительная труба, которая вращается в горизонтальной и вертикальной плоскостях. Труба соединена с микроскопом, с помощью которого можно получать значения углов, нанесённых на лимб, а при использовании специальной дальномерной рейки возможно и определение расстояния между точками как при → работе с нивелиром (как работать нивелиром рассказано по ссылке).

Teodolit F1

Принцип теодолитной съемки заключается в получении неизвестных значений координат и высот требуемой точки, опираясь на точки с известными значениями.

Перед началом съемки теодолит необходимо привести в рабочее положение. Инструмент устанавливается на штативе над точкой с известными координатами и приводится в горизонтальное положение специальными винтами, расположенными на подставке (1). В окуляр (2) мы видим центр визируемой точки, над которой устанавливаем инструмент, а уровни (3) помогают нам контролировать горизонтальное положение инструмента. Работая зажимными винтами штатива и подставки, добиваемся такого положения, когда инструмент установлен горизонтально над стартовой точкой. У новичков эта процедура вызывает некоторые трудности, а специалисты производят центрирование теодолита менее, чем за минуту. В высокоточных инструментах система центрировки – оптическая, в остальных используется отвес на нити.

Teodolit F2

Далее визиром (8) грубо наводимся на цель, а винтами (4,7) плавно подводим сетку нитей на центр снимаемого объекта, контролируя процесс с помощью зрительной трубы (9). Так как инструмент оптический, снять отсчет в тёмное время суток невозможно. Для работы нам понадобится настроить зеркальце (10) таким образом, чтобы в систему попадало как можно больше света. После визирования цели берем отсчет, воспользовавшись окуляром микроскопа (11).

Teodolit F3

Установка теодолита, подготовка к работе (видео)

Взятие отсчётов теодолитом

Отсчёт — это число, состоящие из градусов, минут и секунд (секунд не всегда). Посмотрев в микроскоп увидим верхнюю и нижнюю шкалу, маркированную, соответственно, для снятия отсчётов по вертикальному и горизонтальным кругу.

Есть шкаловый микроскоп и микроскоп-оценщик (штриховой микроскоп). Микроскоп-оценщик сразу показывает нужный угол по горизонтальной и вертикальной оси в градусах и минутах, правда точность немного снижена чем у шкалового микроскопа, поскольку минимальное деление равно 10 минутам, а с точностью до минуты приходится определять на глаз.

img fWveJn

Микроскоп-оценщик (слева) и шкаловый микроскоп теодолита

Есть 2 шкалы, которые изменяют своё положение по отношению друг к другу — шкала лимба и шкала алидады. В шкаловом микроскопе на шкалу алидады нанесены цифры от 1 до 6 и 60 делений, соответствующие 60 минутам. Шкала алидады подвижна.

В шкаловом микроскопе значением градусов будет являться то число, которое попало на шкалу алидады для горизонтального угла или, соответственно, вертикального. Значением в минутах будет являться то число, на которое указывает значение градусов шкалы лимба на шкале алидады. К примеру, на снимке ниже мы увидим значения горизонтального и вертикального углов, соответственно, 181 градус 43 минуты и 121 градус 2 минуты

image190

Точность снятия отсчётов

Со временем подшипники в устройстве могут истираться, что негативно сказывается на полученных значениях. Для этого отсчёт берут несколько раз, при разных значениях круга (лимба) микроскопа.

Для исключения коллимационных ошибок зрительную трубу переводят через зенит, попорачивают теодолит на 180 градусов и заново берут отсчёты. Из нескольких значений получается среднее арифметическое, которое и будет верным значением измеряемого угла. Если отсчеты значительно отличаются (более минуты), процедуру следует повторить.

Кроме метода перевода через зенит, существует метод полуприёмов, когда лимб смещается на целое значение угла градусов и отсчёт берётся второй раз. Для перестановки лимба существуют винты (5, 6). Например, значение горизонтального угла составляет 358 градусов 45 минут. После снятия отсчёта, винтом (6) смещают начальную точку лимба на целое значение градусов угла (для удобства), закрепляя его винтом (5). К примеру, сместив лимб на 90°, мы должны получить значение угла по горизонтальному кругу 358°45′ + 90° = 88°45′.

Определение высоты здания, строения теодолитом (+ видео)

Для примера рассмотрим формулу определения высоты здания, строения, столба и т.п. Берём теодолитом и мерной лентой отсчёты значений, указанных на рисунке ниже, и записываем их в таблицу (тетрадь).

image138

Теодолит располагают на расстоянии, не меньшем высоты строения, если это невозможно, то как можно дальше от объекта. Далее по формуле h = h1 + h2 = d(tgv1 + tgv2) вычисляем высоту строения.

Если линия АВ имеет уклон на местности, необходимо рассчитать горизонтальное проложение этой линии, её проекцию на горизонтальную плоскость по формуле d = Scosν снимая отсчёты как показано на рисунке ниже.

gorizontprologenie

Горизонтальное проложение линии

Как определить высоту сооружения расскажет это видео, с расчётами и формулами.

Измерение горизонтального угла теодолитом (+ видео)

Для измерения горизонтального угла теодолитом нужно установить теодолит в один из углов треугольника. Определить правое и левое направление. Где будет располагаться ноль на шкале — не суть важно, мы можем получить значение угла как разность отсчётов двух точек. Навестись на первую точку, взять отсчёт. Воспользовавшись одним из способов выше для проверки значения, взять отсчёт второй раз и вычислить среднее значение, если расхождение не больше 1 минуты, то измерения сделаны верно. Ведём запись в журнал (тетрадь). Далее наводимся на вторую точку, так же берём отсчёт. Если значение правого угла меньше чем левого, к нему нужно прибавить 360 градусов. Разность отсчётов и будет нашим углом.

Полярный способ съемки теодолитом

В строительстве в основном используют два способа съемки – полярный (рис. 1) и способ створов и перпендикуляров (рис 2). Другие способы съёмки теодолитом: способ угловых засечек, линейных засечек, способ вспомогательных створов и способ обхода.

При полярном способе мы отталкиваемся от двух точек с известными значениями. Эти точки можно взять из уже существующего проекта, плана, государственной геодезической сети (при наличии СРО), либо при самостоятельной разработке плана задать эти точки самостоятельно, начиная с самостоятельно определённого ноля по x;y;z координат. Полярный способ бывает замкнутый и разомкнутый.

Рассмотрим для начала разомкнутый способ, который мы потом приведём к замкнутому. Инструмент устанавливается на исходную точку 2, берётся начальный отсчёт на исходную точку 1, либо наоборот. Измеряется расстояние рулеткой, мерной лентой или дальномером до точки теодолитного хода 1, устанавливается метка (колышек заподлицо с землёй, либо вертикальная рейка). Измеряется левый по ходу угол на точку теодолитного хода 1. Дойдя до съёмочной точки 2 мы последовательно вычисляем значения горизонтальных углов к каждой из точек контура (рис. 1). Таким образом так же можно измерить расстояния до точек объекта съёмки и вертикальные углы с любой нужной вам точки теодолитного хода. Далее, пользуясь формулами вычислить необходимые значения и расстояния, многие расчёты приведены в нескольких видео на этой странице.

Teodolit R1

Последний этап – «привязка» теодолитного хода к известным точкам и создания → плана местности на бумаге (по ссылке рассказано как сделать план или схему местности). Так как контрольные точки находятся в одной системе координат, данный полигон можно привести к замкнутому, доведя ход от контрольной точки 2 до исходной точки 1. Далее нужно вычислить погрешность замкнутого теодолитного хода, которая вычисляется проще, чем для разомкнутого.

Погрешность замкнутого теодолитного хода, невязка

В результате несложных расчётов мы получим невязку, которую сравниваем с допустимой. В случае, если значение в допуске, погрешность пропорционально раскидывается в стороны полигона.

Для замкнутого теодолитного хода погрешность определяется по формуле:

nevyazka1

Где nevyazka2сумма углов фактическая (измеренная), а nevyazka3— сумма углов теоретическая, то есть которая должна быть по законам геометрии.

Вычисляется теоретическая сумма углов по формуле:

nevyazka4

Где n — число измеренных углов.

Допустимая погрешность суммы углов замкнутого теодолитного хода определяется по формуле:

191940 nomer m7a63c485 1

Если фактическая погрешность больше допустимой, ещё раз проверяем записи, если проблема не в этом, берём отсчёты заново. Если погрешность меньше или равна допустимой вычисляем поправку по формуле:

pogreshnost

Значение раскидываем на все углы. Если число получается не целое, в одни углы вводим поправки больше чем в другие.

Съёмка теодолитом методом створов и перпендикуляров

Метод створов и перпендикуляров хорошо подходит при разбивочных работах. В этом случае мы откладываем на местности прямые углы, последовательно переставляя инструмент на полученные точки на местности. К примеру, от базисной стороны 1-2 мы получаем контрольное направление 1. Сетка нитей в этом случае играет роль шнурки. Измерив, необходимое расстояние, попадаем в стартовую разбивочную точку, а дальше работаем согласно схеме.

Teodolit R2

Теодолитом можно разбить прямоугольный полигон или проконтролировать соосность разбитого полигона. Теоретическая сумма углов в замкнутом контуре должна быть равна 360°. Устанавливая последовательно инструмент в каждую из точек объекта, измеряем внутренние углы. К примеру, невязка в 1° на 10-метровом отрезке составляет примерно 20 см. Так что можно оценить допуски в зависимости от класса сооружения, и при необходимости внести коррективы в разбивку осей.

Определение расстояния теодолитом с помощью дальномерной рейки

С помощью теодолита можно определить и расстояние до точки взятия отсчётов, с погрешностью примерно в 10 см. Устанавливаем дальномерную рейку на точку, до которой хотим измерить расстояние. В визирной сетки теодолита есть 2 дальномерных штриха, расположенных сверху и снизу. Измерение расстояние производится просто. Считаем количество сантиметров от одного горизонтального дальномерного штриха до другого и умножаем полученное значение на дальномерный коэффициент трубы, который обычно равен 100.

i e603776c9a07bfc1 html d036cc18

Определение расстояния теодолитом при помощи дальномерной рейки по дальномерным нитям

На приведённом примере расстояния до рейки будет примерно 19,4 метра.

Геодезия, видеолекция «Теодолитная, тахеометрическая съёмки»

Подробнейшую информацию о работе с теодолитом, с формулами можно узнать из этого видео.

Оставляйте ваши советы и комментарии ниже. Подписывайтесь на новостную рассылку. Успехов вам, и добра вашей семье!

Источник