Как сделать таблицу относительных частот

3. Интервальный вариационный ряд.
Гистограмма относительных частот

На предыдущем уроке по математической статистике (Занятие 1) мы разобрали дискретный вариационный ряд (Занятие 2), и сейчас на очереди интервальный. Его понятие, графическое представление (гистограмма и эмпирическая функция распределения), а также рациональные методы вычислений, как ручные, так и программные. В том числе будут рассмотрены задачи с достаточно большим количеством (100-200) вариант – что делать в таких случаях, как обработать большой массив данных.

Предпосылкой построения интервального вариационного ряда (ИВР) является тот факт, что исследуемая величина принимает слишком много различных значений. Зачастую ИВР появляется в результате измерения непрерывной характеристики изучаемых объектов. Типично – это время, масса, размеры и другие физические характеристики. Подходящие примеры встретились в первой же статье по матстату, вспоминаем Константина, который замерял время на лабораторной работе и Фёдора, который взвешивал помидоры.

Для изучения интервального вариационного ряда затруднительно либо невозможно применить тот же подход, что и для дискретного ряда. Это связано с тем, что ВСЕ варианты многих ИВР различны. И даже если встречаются совпадающие значения, например, 50 грамм и 50 грамм, то связано это с округлением, ибо полученные значения всё равно отличаются хоть какими-то микрограммами.

Поэтому для исследования ИВР используется другой подход, а именно, определяется интервал, в пределах которого варьируются значения, затем данный интервал делится на частичные интервалы, и по каждому интервалу подсчитываются частоты – количество вариант, которые в него попали.

Разберём всю кухню на конкретной задаче, и чтобы как-то разнообразить физику, я приведу пример с экономическим содержанием, кои десятками предлагают студентам экономических отделений. Деньги, строго говоря, дискретны, но если надо, непрерывны :), и по причине слишком большого разброса цен, для них целесообразно строить интервальный ряд:

По результатам исследования цены некоторого товара в различных торговых точках города, получены следующие данные (в некоторых денежных единицах):
intervalnyi variacionnyi ryad clip image002
Требуется составить вариационный ряд распределения, построить гистограмму и полигон относительных частот + бонус – эмпирическую функцию распределения.

Такое обывательское исследование проводит каждый из нас, начиная с анализа цены на пакет молока вот это дожил в нескольких магазинах, и заканчивая ценами на недвижимость по гораздо бОльшей выборке. Что называется, не какие-то там унылые сантиметры.

Поэтому представьте свой любимый товар / услугу и наслаждайтесь решением🙂

Очевидно, что перед нами выборочная совокупность объемом intervalnyi variacionnyi ryad clip image004наблюдений (таблица 10*3), и вопрос номер один: какой ряд составлять – дискретный или интервальный? Смотрим на таблицу: среди предложенных цен есть одинаковые, но их разброс довольно велик, и поэтому здесь целесообразно провести интервальное разбиение. К тому же цены могут быть округлёнными.

Начнём с экстремальной ситуации, когда у вас под рукой нет Экселя или другого подходящего программного обеспечения. Только ручка, карандаш, тетрадь и калькулятор.

Тактика действий похожа на исследование дискретного вариационного ряда. Сначала окидываем взглядом предложенные числа и определяем примерный интервал, в который вписываются эти значения. «Навскидку» все значения заключены в пределах от 5 до 11. Далее делим этот интервал на удобные подынтервалы, в данном случае напрашиваются промежутки единичной длины. Записываем их на черновик:
intervalnyi variacionnyi ryad clip image006

Теперь начинаем вычёркивать числа из исходного списка и записывать их в соответствующие колонки нашей импровизированной таблицы:
intervalnyi variacionnyi ryad clip image008
После этого находим самое маленькое число в левой колонке и самое большое значение – в правой. Тут даже ничего искать не пришлось, честное слово, не нарочно получилось:)
intervalnyi variacionnyi ryad clip image010ден. ед. – хорошим тоном считается указывать размерность.

Вычислим размах вариации:
intervalnyi variacionnyi ryad clip image012ден. ед. – длина общего интервала, в пределах которого варьируется цена.

Теперь его нужно разбить на частичные интервалы. Сколько интервалов рассмотреть? По умолчанию на этот счёт существует формула Стерджеса:

intervalnyi variacionnyi ryad clip image014, где intervalnyi variacionnyi ryad clip image016десятичный логарифм* от объёма выборки и intervalnyi variacionnyi ryad clip image018– оптимальное количество интервалов, при этом результат округляют до ближайшего левого целого значения.

* есть на любом более или менее приличном калькуляторе

В нашем случае получаем:
intervalnyi variacionnyi ryad clip image020интервалов.

Следует отметить, что правило Стерджеса носит рекомендательный, но не обязательный характер. Нередко в условии задачи прямо сказано, на какое количество интервалов нужно проводить разбиение (на 4, 5, 6, 10 и т.д.), и тогда следует придерживаться именно этого указания.

Длины частичных интервалов могут быть различны, но в большинстве случаев использует равноинтервальную группировку:
intervalnyi variacionnyi ryad clip image027– длина частичного интервала. В принципе, здесь можно было не округлять и использовать длину 0,96, но удобнее, ясен день, 1.

И коль скоро мы прибавили 0,04, то по 5 частичным интервалам у нас получается «перебор»: intervalnyi variacionnyi ryad clip image029. Посему от самой малой варианты intervalnyi variacionnyi ryad clip image031отмеряем влево 0,1 влево (половину «перебора») и к значению 5,7 начинаем прибавлять по intervalnyi variacionnyi ryad clip image033, получая тем самым частичные интервалы. При этом сразу рассчитываем их середины intervalnyi variacionnyi ryad clip image035(например, intervalnyi variacionnyi ryad clip image037) – они требуются почти во всех тематических задачах:
intervalnyi variacionnyi ryad clip image039
– убеждаемся в том, что самая большая варианта intervalnyi variacionnyi ryad clip image041вписалась в последний частичный интервал и отстоит от его правого конца на 0,1.

Далее подсчитываем частоты по каждому интервалу. Для этого в черновой «таблице» обводим значения, попавшие в тот или иной интервал, подсчитываем их количество и вычёркиваем:
intervalnyi variacionnyi ryad clip image043
Так, значения из 1-го интервала я обвёл овалами (7 штук) и вычеркнул, значения из 2-го интервала – прямоугольниками (11 штук) и вычеркнул и так далее.

Правило: если варианта попадает на «стык» интервалов, то её следует относить в правый интервал. У нас такая варианта встретилась одна: intervalnyi variacionnyi ryad clip image045– и её нужно причислить к интервалу intervalnyi variacionnyi ryad clip image047.

В результате получаем интервальный вариационный ряд, при этом обязательно убеждаемся в том, что ничего не потеряно: intervalnyi variacionnyi ryad clip image049, и, кроме того, рассчитываем относительные частоты intervalnyi variacionnyi ryad clip image051по каждому интервалу, которые уместно округлить до двух знаков после запятой:
intervalnyi variacionnyi ryad clip image053

Дело за чертежами. Для ИВР чаще всего требуется построить гистограмму.

Гистограмма относительных частот – это фигура, состоящая из прямоугольников, ширина которых равна длинам частичных интервалов, а высота – соответствующим относительным частотам:
intervalnyi variacionnyi ryad clip image055
При этом вполне допустимо использовать нестандартную шкалу по оси абсцисс, в данном случае я начал нумерацию с четырёх.

Площадь гистограммы равна единице, и это статистический аналог функции плотности распределения непрерывной случайной величины. Построенный чертёж даёт наглядное и весьма точное представление о распределении цен на ботинки по всей генеральной совокупности. Но это при условии, что выборка представительна.

Вместе с гистограммой нередко требуют построить полигон. Без проблем, полигон относительных частот – это ломаная, соединяющая соседние точки intervalnyi variacionnyi ryad clip image057, где intervalnyi variacionnyi ryad clip image035 0000– середины интервалов:
intervalnyi variacionnyi ryad clip image060

Автоматизируем решение в Экселе:

videoКак составить ИВР и представить его графически? (Ютуб)

И бонус – эмпирическая функция распределения. Она определяется точно так же, как в дискретном случае:

intervalnyi variacionnyi ryad clip image062, где intervalnyi variacionnyi ryad clip image064– количество вариант СТРОГО МЕНЬШИХ, чем «икс», который «пробегает» все значения от «минус» до «плюс» бесконечности.

Но вот построить её для интервального ряда намного проще. Находим накопленные относительные частоты:
intervalnyi variacionnyi ryad clip image066

И строим кусочно-ломаную линию, с промежуточными точками intervalnyi variacionnyi ryad clip image068, где intervalnyi variacionnyi ryad clip image070– правые концы интервалов, а intervalnyi variacionnyi ryad clip image072– относительная частота, которая успела накопиться на всех «пройденных» интервалах:
intervalnyi variacionnyi ryad clip image074
При этом intervalnyi variacionnyi ryad clip image076если intervalnyi variacionnyi ryad clip image078и intervalnyi variacionnyi ryad clip image080если intervalnyi variacionnyi ryad clip image082.

Напоминаю, что данная функция не убывает, принимает значения из промежутка intervalnyi variacionnyi ryad clip image084и, кроме того, для ИВР она ещё и непрерывна.

Эмпирическая функция распределения является аналогом функции распределения НСВ и приближает теоретическую функцию intervalnyi variacionnyi ryad clip image086, которую теоретически, а иногда и практически можно построить по всей генеральной совокупности.

Помимо перечисленных графиков, вариационные ряды также можно представить с помощью кумуляты и огивы частот либо относительных частот, но в классическом учебном курсе эта дичь редкая, и поэтому о ней буквально пару абзацев:

Кумулята – это ломаная, соединяющая точки:

intervalnyi variacionnyi ryad clip image088* либо intervalnyi variacionnyi ryad clip image090– для дискретного вариационного ряда;
intervalnyi variacionnyi ryad clip image092либо intervalnyi variacionnyi ryad clip image068 0000– для интервального вариационного ряда.

* intervalnyi variacionnyi ryad clip image095– накопленные «обычные» частоты

В последнем случае кумулята относительных частот intervalnyi variacionnyi ryad clip image068 0001представляет собой «главный кусок» недавно построенной эмпирической функции распределения.

Огива – это обратная функция по отношению к кумуляте – здесь варианты откладываются по оси ординат, а накопленные частоты либо относительные частоты – по оси абсцисс.

С построением данных линий, думаю, проблем быть не должно, чего не скажешь о другой проблеме. Хорошо, если в вашей задаче всего лишь 20-30-50 вариант, но что делать, если их 100-200 и больше? В моей практике встречались десятки таких задач, и ручной подсчёт здесь уже не торт. Считаю нужным снять небольшое видео:

videoКак быстро составить ИВР при большом объёме выборки? (Ютуб)

Ну, теперь вы монстры 8-го уровня 🙂

Но не всё так сурово. В большинстве задач вам предложат готовый вариационный ряд, и на счёт молока, то, конечно, была шутка:

Выборочная проверка партии чая, поступившего в торговую сеть, дала следующие результаты:
intervalnyi variacionnyi ryad clip image098

Требуется построить гистограмму и полигон относительных частот, эмпирическую функцию распределения

Проверяем свои навыки работы в Экселе! (исходные числа и краткая инструкция прилагается) И на всякий случай краткое решение для сверки в конце урока.

Что ещё важного по теме? Время от времени встречаются ИВР с открытыми крайними интервалами, например:
intervalnyi variacionnyi ryad clip image100

В таких случаях, что убийственно логично, интервалы «закрывают». Обычно поступают так: сначала смотрим на средние интервалы и выясняем длину частичного интервала: intervalnyi variacionnyi ryad clip image102км. И для дальнейшего решения можно считать, что крайние интервалы имеют такую же длину: от 140 до 160 и от 200 до 220 км. Тоже логично. Но уже не убийственно:)

Ну вот, пожалуй, и вся практически важная информация по ИВР.

На очереди числовые характеристики вариационных рядов и начнём мы с их центральных характеристик, а именно – Моды, медианы и средней.

Пример 7. Решение: заполним расчётную таблицу
intervalnyi variacionnyi ryad clip image104

Построим гистограмму и полигон относительных частот:
intervalnyi variacionnyi ryad clip image106

Построим эмпирическую функцию распределения:
intervalnyi variacionnyi ryad clip image108

Автор: Емелин Александр

(Переход на главную страницу)

mark Профессиональная помощь по любому предмету – Zaochnik.com

Источник

3. Интервальный вариационный ряд.
Гистограмма относительных частот

На предыдущем уроке по математической статистике (Занятие 1) мы разобрали дискретный вариационный ряд (Занятие 2), и сейчас на очереди интервальный. Его понятие, графическое представление (гистограмма и эмпирическая функция распределения), а также рациональные методы вычислений, как ручные, так и программные. В том числе будут рассмотрены задачи с достаточно большим количеством (100-200) вариант – что делать в таких случаях, как обработать большой массив данных.

Предпосылкой построения интервального вариационного ряда (ИВР) является тот факт, что исследуемая величина принимает слишком много различных значений. Зачастую ИВР появляется в результате измерения непрерывной характеристики изучаемых объектов. Типично – это время, масса, размеры и другие физические характеристики. Подходящие примеры встретились в первой же статье по матстату, вспоминаем Константина, который замерял время на лабораторной работе и Фёдора, который взвешивал помидоры.

Для изучения интервального вариационного ряда затруднительно либо невозможно применить тот же подход, что и для дискретного ряда. Это связано с тем, что ВСЕ варианты многих ИВР различны. И даже если встречаются совпадающие значения, например, 50 грамм и 50 грамм, то связано это с округлением, ибо полученные значения всё равно отличаются хоть какими-то микрограммами.

Поэтому для исследования ИВР используется другой подход, а именно, определяется интервал, в пределах которого варьируются значения, затем данный интервал делится на частичные интервалы, и по каждому интервалу подсчитываются частоты – количество вариант, которые в него попали.

Разберём всю кухню на конкретной задаче, и чтобы как-то разнообразить физику, я приведу пример с экономическим содержанием, кои десятками предлагают студентам экономических отделений. Деньги, строго говоря, дискретны, но если надо, непрерывны :), и по причине слишком большого разброса цен, для них целесообразно строить интервальный ряд:

По результатам исследования цены некоторого товара в различных торговых точках города, получены следующие данные (в некоторых денежных единицах):
intervalnyi variacionnyi ryad clip image002
Требуется составить вариационный ряд распределения, построить гистограмму и полигон относительных частот + бонус – эмпирическую функцию распределения.

Такое обывательское исследование проводит каждый из нас, начиная с анализа цены на пакет молока вот это дожил в нескольких магазинах, и заканчивая ценами на недвижимость по гораздо бОльшей выборке. Что называется, не какие-то там унылые сантиметры.

Поэтому представьте свой любимый товар / услугу и наслаждайтесь решением🙂

Очевидно, что перед нами выборочная совокупность объемом intervalnyi variacionnyi ryad clip image004наблюдений (таблица 10*3), и вопрос номер один: какой ряд составлять – дискретный или интервальный? Смотрим на таблицу: среди предложенных цен есть одинаковые, но их разброс довольно велик, и поэтому здесь целесообразно провести интервальное разбиение. К тому же цены могут быть округлёнными.

Начнём с экстремальной ситуации, когда у вас под рукой нет Экселя или другого подходящего программного обеспечения. Только ручка, карандаш, тетрадь и калькулятор.

Тактика действий похожа на исследование дискретного вариационного ряда. Сначала окидываем взглядом предложенные числа и определяем примерный интервал, в который вписываются эти значения. «Навскидку» все значения заключены в пределах от 5 до 11. Далее делим этот интервал на удобные подынтервалы, в данном случае напрашиваются промежутки единичной длины. Записываем их на черновик:
intervalnyi variacionnyi ryad clip image006

Теперь начинаем вычёркивать числа из исходного списка и записывать их в соответствующие колонки нашей импровизированной таблицы:
intervalnyi variacionnyi ryad clip image008
После этого находим самое маленькое число в левой колонке и самое большое значение – в правой. Тут даже ничего искать не пришлось, честное слово, не нарочно получилось:)
intervalnyi variacionnyi ryad clip image010ден. ед. – хорошим тоном считается указывать размерность.

Вычислим размах вариации:
intervalnyi variacionnyi ryad clip image012ден. ед. – длина общего интервала, в пределах которого варьируется цена.

Теперь его нужно разбить на частичные интервалы. Сколько интервалов рассмотреть? По умолчанию на этот счёт существует формула Стерджеса:

intervalnyi variacionnyi ryad clip image014, где intervalnyi variacionnyi ryad clip image016десятичный логарифм* от объёма выборки и intervalnyi variacionnyi ryad clip image018– оптимальное количество интервалов, при этом результат округляют до ближайшего левого целого значения.

* есть на любом более или менее приличном калькуляторе

В нашем случае получаем:
intervalnyi variacionnyi ryad clip image020интервалов.

Следует отметить, что правило Стерджеса носит рекомендательный, но не обязательный характер. Нередко в условии задачи прямо сказано, на какое количество интервалов нужно проводить разбиение (на 4, 5, 6, 10 и т.д.), и тогда следует придерживаться именно этого указания.

Длины частичных интервалов могут быть различны, но в большинстве случаев использует равноинтервальную группировку:
intervalnyi variacionnyi ryad clip image027– длина частичного интервала. В принципе, здесь можно было не округлять и использовать длину 0,96, но удобнее, ясен день, 1.

И коль скоро мы прибавили 0,04, то по 5 частичным интервалам у нас получается «перебор»: intervalnyi variacionnyi ryad clip image029. Посему от самой малой варианты intervalnyi variacionnyi ryad clip image031отмеряем влево 0,1 влево (половину «перебора») и к значению 5,7 начинаем прибавлять по intervalnyi variacionnyi ryad clip image033, получая тем самым частичные интервалы. При этом сразу рассчитываем их середины intervalnyi variacionnyi ryad clip image035(например, intervalnyi variacionnyi ryad clip image037) – они требуются почти во всех тематических задачах:
intervalnyi variacionnyi ryad clip image039
– убеждаемся в том, что самая большая варианта intervalnyi variacionnyi ryad clip image041вписалась в последний частичный интервал и отстоит от его правого конца на 0,1.

Далее подсчитываем частоты по каждому интервалу. Для этого в черновой «таблице» обводим значения, попавшие в тот или иной интервал, подсчитываем их количество и вычёркиваем:
intervalnyi variacionnyi ryad clip image043
Так, значения из 1-го интервала я обвёл овалами (7 штук) и вычеркнул, значения из 2-го интервала – прямоугольниками (11 штук) и вычеркнул и так далее.

Правило: если варианта попадает на «стык» интервалов, то её следует относить в правый интервал. У нас такая варианта встретилась одна: intervalnyi variacionnyi ryad clip image045– и её нужно причислить к интервалу intervalnyi variacionnyi ryad clip image047.

В результате получаем интервальный вариационный ряд, при этом обязательно убеждаемся в том, что ничего не потеряно: intervalnyi variacionnyi ryad clip image049, и, кроме того, рассчитываем относительные частоты intervalnyi variacionnyi ryad clip image051по каждому интервалу, которые уместно округлить до двух знаков после запятой:
intervalnyi variacionnyi ryad clip image053

Дело за чертежами. Для ИВР чаще всего требуется построить гистограмму.

Гистограмма относительных частот – это фигура, состоящая из прямоугольников, ширина которых равна длинам частичных интервалов, а высота – соответствующим относительным частотам:
intervalnyi variacionnyi ryad clip image055
При этом вполне допустимо использовать нестандартную шкалу по оси абсцисс, в данном случае я начал нумерацию с четырёх.

Площадь гистограммы равна единице, и это статистический аналог функции плотности распределения непрерывной случайной величины. Построенный чертёж даёт наглядное и весьма точное представление о распределении цен на ботинки по всей генеральной совокупности. Но это при условии, что выборка представительна.

Вместе с гистограммой нередко требуют построить полигон. Без проблем, полигон относительных частот – это ломаная, соединяющая соседние точки intervalnyi variacionnyi ryad clip image057, где intervalnyi variacionnyi ryad clip image035 0000– середины интервалов:
intervalnyi variacionnyi ryad clip image060

Автоматизируем решение в Экселе:

videoКак составить ИВР и представить его графически? (Ютуб)

И бонус – эмпирическая функция распределения. Она определяется точно так же, как в дискретном случае:

intervalnyi variacionnyi ryad clip image062, где intervalnyi variacionnyi ryad clip image064– количество вариант СТРОГО МЕНЬШИХ, чем «икс», который «пробегает» все значения от «минус» до «плюс» бесконечности.

Но вот построить её для интервального ряда намного проще. Находим накопленные относительные частоты:
intervalnyi variacionnyi ryad clip image066

И строим кусочно-ломаную линию, с промежуточными точками intervalnyi variacionnyi ryad clip image068, где intervalnyi variacionnyi ryad clip image070– правые концы интервалов, а intervalnyi variacionnyi ryad clip image072– относительная частота, которая успела накопиться на всех «пройденных» интервалах:
intervalnyi variacionnyi ryad clip image074
При этом intervalnyi variacionnyi ryad clip image076если intervalnyi variacionnyi ryad clip image078и intervalnyi variacionnyi ryad clip image080если intervalnyi variacionnyi ryad clip image082.

Напоминаю, что данная функция не убывает, принимает значения из промежутка intervalnyi variacionnyi ryad clip image084и, кроме того, для ИВР она ещё и непрерывна.

Эмпирическая функция распределения является аналогом функции распределения НСВ и приближает теоретическую функцию intervalnyi variacionnyi ryad clip image086, которую теоретически, а иногда и практически можно построить по всей генеральной совокупности.

Помимо перечисленных графиков, вариационные ряды также можно представить с помощью кумуляты и огивы частот либо относительных частот, но в классическом учебном курсе эта дичь редкая, и поэтому о ней буквально пару абзацев:

Кумулята – это ломаная, соединяющая точки:

intervalnyi variacionnyi ryad clip image088* либо intervalnyi variacionnyi ryad clip image090– для дискретного вариационного ряда;
intervalnyi variacionnyi ryad clip image092либо intervalnyi variacionnyi ryad clip image068 0000– для интервального вариационного ряда.

* intervalnyi variacionnyi ryad clip image095– накопленные «обычные» частоты

В последнем случае кумулята относительных частот intervalnyi variacionnyi ryad clip image068 0001представляет собой «главный кусок» недавно построенной эмпирической функции распределения.

Огива – это обратная функция по отношению к кумуляте – здесь варианты откладываются по оси ординат, а накопленные частоты либо относительные частоты – по оси абсцисс.

С построением данных линий, думаю, проблем быть не должно, чего не скажешь о другой проблеме. Хорошо, если в вашей задаче всего лишь 20-30-50 вариант, но что делать, если их 100-200 и больше? В моей практике встречались десятки таких задач, и ручной подсчёт здесь уже не торт. Считаю нужным снять небольшое видео:

videoКак быстро составить ИВР при большом объёме выборки? (Ютуб)

Ну, теперь вы монстры 8-го уровня 🙂

Но не всё так сурово. В большинстве задач вам предложат готовый вариационный ряд, и на счёт молока, то, конечно, была шутка:

Выборочная проверка партии чая, поступившего в торговую сеть, дала следующие результаты:
intervalnyi variacionnyi ryad clip image098

Требуется построить гистограмму и полигон относительных частот, эмпирическую функцию распределения

Проверяем свои навыки работы в Экселе! (исходные числа и краткая инструкция прилагается) И на всякий случай краткое решение для сверки в конце урока.

Что ещё важного по теме? Время от времени встречаются ИВР с открытыми крайними интервалами, например:
intervalnyi variacionnyi ryad clip image100

В таких случаях, что убийственно логично, интервалы «закрывают». Обычно поступают так: сначала смотрим на средние интервалы и выясняем длину частичного интервала: intervalnyi variacionnyi ryad clip image102км. И для дальнейшего решения можно считать, что крайние интервалы имеют такую же длину: от 140 до 160 и от 200 до 220 км. Тоже логично. Но уже не убийственно:)

Ну вот, пожалуй, и вся практически важная информация по ИВР.

На очереди числовые характеристики вариационных рядов и начнём мы с их центральных характеристик, а именно – Моды, медианы и средней.

Пример 7. Решение: заполним расчётную таблицу
intervalnyi variacionnyi ryad clip image104

Построим гистограмму и полигон относительных частот:
intervalnyi variacionnyi ryad clip image106

Построим эмпирическую функцию распределения:
intervalnyi variacionnyi ryad clip image108

Автор: Емелин Александр

(Переход на главную страницу)

mark Профессиональная помощь по любому предмету – Zaochnik.com

Источник