Как сделать сферический конденсатор

Делаем высоковольтный конденсатор в домашних условиях

1414439027 19 hv samodelnyy vysokovoltnyy kondensator 27

Любители разных высоковольтных опытов часто сталкиваются с проблемой, когда бывает необходимо использовать высоковольтные конденсаторы. Как правило, такие конденсаторы очень сложно найти, а если и удастся, то придется заплатить за них немало денег, что по силам отнюдь не каждому. Помимо этого политика нашего сайта просто не позволит вам тратить средства на покупку того, что можно самому изготовить, не выходя из дому.

Как вы уже догадались, данный материал мы решили посвятить сборке высоковольтного конденсатора, чему также посвящен авторский видеоролик, который мы предлагаем вам посмотреть перед началом работы.

Что же нам понадобится:
— нож;
— то, что мы будем использовать в качестве диелектрика;
— пищевая фольга;
— прибор для измерения емкости.

1414438981 19 hv samodelnyy vysokovoltnyy kondensator 09

Сразу отметим, что в качестве диелектрика автор самодельного конденсатора использует самые обычные самоклеющиеся обои. Что касается прибора для измерения емкости, то его использование не обязательно, поскольку предназначен этот прибор только для того, чтобы в конце можно было узнать, что получилось в итоге. С материалами все ясно, можно приступать к сборке самодельного конденсатора.

Первым делом отрезаем два куска от самоклеющихся обоев. Нужно примерно полметра, однако желательно, чтобы одна полоска получилась чуть длиннее другой.

1414439024 19 hv samodelnyy vysokovoltnyy kondensator 12

Далее берем пищевую фольгу и отрезаем кусок по длине короткого куска от самоклеющихся обоев. По словам автора, лучше будет если кусок фольги будет примерно на 5 см меньше куска обоев.

1414439019 19 hv samodelnyy vysokovoltnyy kondensator 13

Получившийся лист фольги режим ровно на две части по длине.

1414439054 19 hv samodelnyy vysokovoltnyy kondensator 14

Следующим делом кладем на ровную поверхность один кусок обоев, на который аккуратно кладем один кусок пищевой фольги. Фольге нужно класть так, чтобы по трем краям получился зазор примерно в сантиметр. С четвертой стороны фольга будет выпирать, что вполне нормально на этом этапе.

1414438996 19 hv samodelnyy vysokovoltnyy kondensator 16

Сверху кладем второй лист обоев.

1414438995 19 hv samodelnyy vysokovoltnyy kondensator 17

На нем кладем второй лист фольги. Только на этот раз делаем так, чтобы выступала фольга с противоположной предыдущему шагу стороне. То есть, если у автора первый кусок выступал снизу, то на этот раз он должен выступать сверху. Отдельно следует отметить, что листы фольги не должны касаться друг друга.

1414439043 19 hv samodelnyy vysokovoltnyy kondensator 18

Далее берем получившуюся заготовку и сворачиваем в трубочку.

1414439089 19 hv samodelnyy vysokovoltnyy kondensator 19

Теперь с одного края снимаем подложку и проклеиваем наш конденсатор.

1414439014 19 hv samodelnyy vysokovoltnyy kondensator 21

После этого сгибаем края и сворачиваем фольгу как конфетный фантик. Таким образом мы получаем выходы, к которым и будут крепиться провода.

Источник

Появились такие приборы сравнительно недавно, лет двадцать назад. Их называют по-разному: ионисторами, иониксами или просто суперконденсаторами.

Не думайте, что они доступны лишь каким-то аэрокосмическим фирмам высокого полета. Сегодня можно купить в магазине ионистор размером с монету и емкостью в одну фараду, что в 1500 раз больше емкости земного шара и близко к емкости самой большой планеты Солнечной системы — Юпитера.

Любой конденсатор запасает энергию. Чтобы понять, сколь велика или мала энергия, запасаемая в ионисторе, важно ее с чем-то сравнить. Вот несколько необычный, зато наглядный способ.

Энергии обычного конденсатора достаточно, чтобы он мог подпрыгнуть примерно на метр-полтора. Крохотный ионистор типа 58-9В, имеющий массу 0,5 г, заряженный напряжением 1 В, мог бы подпрыгнуть на высоту 293 м!

Иногда думают, что ионисторы способны заменить любой аккумулятор. Журналисты живописали мир будущего с бесшумными электромобилями на суперконденсаторах. Но пока до этого далеко. Ионистор массой в один кг способен накопить 3000 Дж энергии, а самый плохой свинцовый аккумулятор — 86 400 Дж — в 28 раз больше. Однако при отдаче большой мощности за короткое время аккумулятор быстро портится, да и разряжается только наполовину. Ионистор же многократно и без всякого вреда для себя отдает любые мощности, лишь бы их могли выдержать соединительные провода. Кроме того, ионистор можно зарядить за считаные секунды, а аккумулятору на это обычно нужны часы.

Это и определяет область применения ионистора. Он хорош в качестве источника питания устройств, кратковременно, но достаточно часто потребляющих большую мощность: электронной аппаратуры, карманных фонарей, автомобильных стартеров, электрических отбойных молотков. Ионистор может иметь и военное применение как источник питания электромагнитных орудий. А в сочетании с небольшой электростанцией ионистор позволяет создавать автомобили с электроприводом колес и расходом топлива 1-2 л на 100 км.

Ионисторы на самую разную емкость и рабочее напряжение есть в продаже, но стоят они дороговато. Так что если есть время и интерес, можно попробовать сделать ионистор самостоятельно. Но прежде чем дать конкретные советы, немного теории.

Из электрохимии известно: при погружении металла в воду на его поверхности образуется так называемый двойной электрический слой, состоящий из разноименных электрических зарядов — ионов и электронов. Между ними действуют силы взаимного притяжения, но заряды не могут сблизиться. Этому мешают силы притяжения молекул воды и металла. По сути своей двойной электрический слой не что иное, как конденсатор. Сосредоточенные на его поверхности заряды выполняют роль обкладок. Расстояние между ними очень мало. А, как известно, емкость конденсатора при уменьшении расстояния между его обкладками возрастает. Поэтому, например, емкость обычной стальной спицы, погруженной в воду, достигает нескольких мФ.

По сути своей ионистор состоит из двух погруженных в электролит электродов с очень большой площадью, на поверхности которых под действием приложенного напряжения образуется двойной электрический слой. Правда, применяя обычные плоские пластины, можно было бы получить емкость всего лишь в несколько десятков мФ. Для получения же свойственных ионисторам больших емкостей в них применяют электроды из пористых материалов, имеющих большую поверхность пор при малых внешних размерах.

На эту роль были перепробованы в свое время губчатые металлы от титана до платины. Однако несравненно лучше всех оказался… обычный активированный уголь. Это древесный уголь, который после специальной обработки становится пористым. Площадь поверхности пор 1 см3 такого угля достигает тысячи квадратных метров, а емкость двойного электрического слоя на них — десяти фарад!

Самодельный ионистор На рисунке 1 изображена конструкция ионистора. Он состоит из двух металлических пластин, плотно прижатых к «начинке» из активированного угля. Уголь уложен двумя слоями, между которыми проложен тонкий разделительный слой вещества, не проводящего электроны. Все это пропитано электролитом.

При зарядке ионистора в одной его половине на порах угля образуется двойной электрический слой с электронами на поверхности, в другой — с положительными ионами. После зарядки ионы и электроны начинают перетекать навстречу друг другу. При их встрече образуются нейтральные атомы металла, а накопленный заряд уменьшается и со временем вообще может сойти на нет.

Чтобы этому помешать, между слоями активированного угля и вводится разделительный слой. Он может состоять из различных тонких пластиковых пленок, бумаги и даже ваты.
В любительских ионисторах электролитом служит 25%-ный раствор поваренной соли либо 27%-ный раствор КОН. (При меньших концентрациях не сформируется слой отрицательных ионов на положительном электроде.)

В качестве электродов применяют медные пластины с заранее припаянными к ним проводами. Их рабочие поверхности следует очистить от окислов. При этом желательно воспользоваться крупнозернистой шкуркой, оставляющей царапины. Эти царапины улучшат сцепление угля с медью. Для хорошего сцепления пластины должны быть обезжирены. Обезжиривание пластин производится в два этапа. Вначале их промывают мылом, а затем натирают зубным порошком и смывают его струей воды. После этого прикасаться к ним пальцами не стоит.

Активированный уголь, купленный в аптеке, растирают в ступке и смешивают с электролитом до получения густой пасты, которой намазывают тщательно обезжиренные пластины.

При первом испытании пластины с прокладкой из бумаги кладут одна на другую, после этого попробуем его зарядить. Но здесь есть тонкость. При напряжении более 1 В начинается выделение газов Н2, О2. Они разрушают угольные электроды и не позволяют работать нашему устройству в режиме конденсатора-ионистора.

Поэтому мы должны заряжать его от источника с напряжением не выше 1 В. (Именно такое напряжение на каждую пару пластин рекомендовано для работы промышленных ионисторов.)

Подробности для любознательных

При напряжении более 1,2 В ионистор превращается в газовый аккумулятор. Это интересный прибор, тоже состоящий из активированного угля и двух электродов. Но конструктивно он выполнен иначе (см. рис. 2). Обычно берут два угольных стержня от старого гальванического элемента и обвязывают вокруг них марлевые мешочки с активированным углем. В качестве электролита употребляется раствор КОН. (Раствор поваренной соли применять не следует, поскольку при ее разложении выделяется хлор.)

Энергоемкость газового аккумулятора достигает 36 000 Дж/кг, или 10 Вт-ч/кг. Это в 10 раз больше, чем у ионистора, но в 2,5 раза меньше, чем у обычного свинцового аккумулятора. Однако газовый аккумулятор — это не просто аккумулятор, а очень своеобразный топливный элемент. При его зарядке на электродах выделяются газы — кислород и водород. Они «оседают» на поверхности активированного угля. При появлении же тока нагрузки происходит их соединение с образованием воды и электрического тока. Процесс этот, правда, без катализатора идет очень медленно. А катализатором, как выяснилось, может быть только платина… Поэтому, в отличие от ионистора, газовый аккумулятор большие токи давать не может.

Тем не менее, московский изобретатель А.Г. Пресняков (http://chemfiles.narod.r u/hit/gas_akk.htm) успешно применил для запуска мотора грузовика газовый аккумулятор. Его солидный вес — почти втрое больше обычного — в этом случае оказался терпим. Зато низкая стоимость и отсутствие таких вредных материалов, как кислота и свинец, казалось крайне привлекательным.

Газовый аккумулятор простейшей конструкции оказался склонен к полному саморазряду за 4-6 часов. Это и положило конец опытам. Кому же нужен автомобиль, который после ночной стоянки нельзя завести?

И все же «большая техника» про газовые аккумуляторы не забыла. Мощные, легкие и надежные, они стоят на некоторых спутниках. Процесс в них идет под давлением около 100 атм, а в качестве поглотителя газов применяется губчатый никель, который при таких условиях работает как катализатор. Все устройство размещено в сверхлегком баллоне из углепластика. Получились аккумуляторы с энергоемкостью почти в 4 раза выше, чем у аккумуляторов свинцовых. Электромобиль мог бы на них пройти около 600 км. Но, к сожалению, пока они очень дороги.

Источник

RadiobookA

радиолюбительский портал

По теме

Радио-начинающим

КАК СДЕЛАТЬ КОНДЕНСАТОР ПОСТОЯННОЙ ЕМКОСТИ

Сделать конденсатор постоянной емкости нетрудно. Для этого потребуется станиолевая фольга (оловянная бумага), парафинированная бумага и кусочки жести. Станиолевую фольгу можно взять от оберток конфет или шоколада, а парафинированную бумагу можно сделать самим.

Для этого берут тонкую папиросную бумагу и нарезают ее полосками шириной 50 мм и длиной 200—300 мм.

Полоски погружают на 2—3 минуты в расплавленный парафин (не кипящий). Как только их вынут, парафин тотчас застывает. После этого его нужно осторожно соскоблить тупой стороной ножа, чтобы не порвать бумаги. Получаются парафинированные листы.

kak sd3

Рис. 111. Самодельный конденсатор постоянной емкости.

Для конденсатора парафинированную бумагу складывают буквой «И», как показано на рисунке 111, в промежутки, с той и с другой стороны «гармошки», вкладывают станиолевые листки размером 45X30 мм.

Когда все листки будут вставлены, «гармошку» складывают и проглаживают подогретым утюгом. Оставшиеся с наружной стороны станиолевые концы соединяются между собой.

Сделать это лучше так: из плотного картона вырезают две пластинки, накладывают их с обеих сторон «гармошки» и зажимают двумя обоймочками, сделанными из жести или латуни. К обоймочкам нужно припаять проводнички, с помощью которых конденсатор припаивается при монтаже.

При десяти станиолевых листочках емкость конденсатора будет примерно равна 1 000 пф.

Если количество листочков увеличить в два раза, емкость конденсатора также увеличится примерно в два раза.

Таким способом можно делать конденсаторы емкостью от 100 до 5 т. пф.

Конденсаторы большой емкости от 5 т. пф до 0,2 мкф делаются несколько иначе. Для их изготовления потре* буется старый бумажный микрофарадный конденсатор.

Бумажный конденсатор представляет собой рулон, свернутый из ленты, состоящей из двух полос парафинированной бумаги и проложенных между ними двух полос станиолевой фольги.

Для того чтобы определить длину полоски, нужную нам для конденсатора, пользуются формулой:

Изготовляют конденсатор следующим образом; от рулона микрофарадного конденсатора (рис. 112) отматывают ленту нужной нам длины (все четыре полосы). Чтобы обкладки конденсатора не соединились между собой, з начале и в конце ленты станиолевую фольгу обрезают на 10 мм больше, чем бумагу.

kak sd4

Рис. 112 Самодельный конденсатор большой емкости.

Перед тем как свернуть ленту, от каждой полоски фольги делается вывод тонким многожильным проводом или луженой медной фольгой. Вывод от одной обкладки кладется в начале ленты, а от другой — в конце и в противоположную сторону. Затем лента свертывается в трубку и сверху обклеивается плотной бумагой. Бумага для обклейки берется шире ленты на 10 мм. На выступающих краях бумаги заделывают два жестких монтажных проводника.

К этим проводникам с внутренней стороны бумажной гильзы припаивают выводы от обкладок конденсатора, как это показано на рисунке.

Источник

Лейденская банка или простейший конденсатор своими руками. Делаем простой настроечный конденсатор для укв своими руками Самодельный высоковольтный конденсатор большой емкости

Конструктивно это «бутерброд» из двух проводников и диэлектрика, которым может быть вакуум, газ, жидкость, органическое или неорганическое твердое тело. Первые отечественные конденсаторы (стеклянные банки с дробью, обклеенные фольгой) делали в 1752 г. М. Ломоносов и Г. Рихтер.

Что может быть интересного в конденсаторе? Приступая к работе над этой статьей я думал что смогу собрать и кратко изложить все об этой примитивной детальке. Но по мере знакомства с конденсатором, я с удивлением понимал, что здесь не рассказать и сотой доли всех сокрытых в нем тайн и чудес…

Конденсатору уже более 250 лет, но он и не думает устаревать.. Кроме того, 1 кг «обычных просто конденсаторов» хранит меньше энергии чем килограмм аккумуляторов или топливных ячеек, но способен быстрее чем они выдать ее, развивая при этом большую мощность. — При быстром разряде конденсатора можно получить импульс большой мощности, например, в фотовспышках, импульсных лазерах с оптической накачкой и коллайдерах. Конденсаторы есть практически в любом приборе, поэтому если у вас нет новых конденсаторов, для опытов их можно выпаять оттуда.

Заряд конденсатора — это абсолютное значение заряда одной из его обкладок. Он измеряется в кулонах и пропорционален числу лишних (-) или недостающих (+) электронов. Чтобы собрать заряд в 1 кулон, Вам понадобится 6241509647120420000 электрона. В пузырьке водорода, размером со спичечную головку их примерно столько же.

В заряженном проводнике заряды стараются разбежаться друг от друга как можно дальше и потому находятся не в толще конденсатора, а в поверхностном слое металла, подобно пленке бензина на поверхности воды. Если два проводника образуют конденсатор, то эти избыточные заряды собираются друг напротив друга. Потому практически все электрическое поле конденсатора сосредоточено между его обкладками.

На каждой обкладке заряды распределяются так, чтобы быть подальше от соседей. И расположены они довольно просторно: в воздушном конденсаторе с расстоянием между пластинами 1 мм, заряженном до 120 В, среднее расстояние между электронами составляет более 400 нанометров, что в тысячи раз больше расстояния между атомами (0,1-0,3 нм), а значит на миллионы поверхностных атомов приходится всего один лишний (или недостающий) электрон.

Если уменьшить расстояние между обкладками, то силы притяжения возрастут, и при том же напряжении заряды на обкладках смогут «ужиться» плотнее. Увеличится емкость конденсатора. Так и сделал ничего не подозревавший профессор Лейденского университета ван Мушенброк. Он заменил толстостенную бутылку первого в мире конденсатора (созданного немецким священником фон Клейстом в 1745 г.) тонкой стеклянной банкой. Зарядил ее и потрогал, а очнувшись через два дня сообщил, что не согласится повторить опыт, даже если бы за это обещали французское королевство.

Если поместить между обкладками диэлектрик, то они поляризуют его, то есть притянут к себе разноименные заряды из которых он состоит. При этом будет тот же эффект как если бы обкладки приблизились. Диэлектрик с высокой относительной диэлектрической проницаемостью можно рассматривать как хороший транспортер электрического поля. Но никакой транспортер не идеален, поэтому какой бы мы чудесный диэлектрик не добавили поверх уже имеющегося, емкость конденсатора только снизится. Повысить емкость можно только если добавлять диэлектрик (а еще лучше — проводник) вместо уже имеющегося но обладающего меньшей ε.

В диэлектриках свободных зарядов почти нет. Все они зафиксированы то ли в кристаллической решетке, или в молекулах – полярных (представляющих собой диполи) или нет. Если внешнего поля нет, диэлектрик неполяризован, диполи и свободные заряды разбросаны хаотически и диэлектрик собственного поля не имеет. в электрическом поле он поляризуется: диполи ориентируются по полю. Так как молекулярных диполей очень много, то при их ориентации, плюсы и минусы соседних диполей внутри диэлектрика компенсируют друг друга. Нескомпенсированными остаются только поверхностные заряды – на одной поверхности – одного, на другой — другого. Свободные заряды во внешнем поле также дрейфуют и разделяются.

При этом разные процессы поляризации идут с разной скоростью. Одно дело – смещение электронных оболочек, происходящее практически мгновенно, другое дело – поворот молекул, особенно больших, третье – миграция свободных зарядов. Последние два процесса, очевидно, зависят от темературы, и в жидкостях идут гораздо шустрее, чем в твердых телах. Если нагреть диэлектрик, повороты диполей и миграция зарядов ускорится. Если поле выключить, деполяризация диэлектрика происходит тоже не мгновенно. Он остается некоторое время поляризованным, пока тепловое движение не разбросает молекулы в исходное хаотическое состояние. Поэтому, для конденсаторов, где переключается полярность с высокой частотой пригодны только неполярные диэлектрики: фторопласт, полипропилен.

Если разобрать заряженный конденсатор, а потом собрать (пластмассовым пинцетом), энергия никуда не денется, и светодиод сможет моргнуть. Он даже моргнет если подключить его к конденсатору в разобранном состоянии. Оно и понятно – при разборке заряд с пластин никуда не делся, а напряжение даже выросло, поскольку уменьшилась емкость и теперь обкладки прямо-таки распирает от зарядов. Стоп, как это напряжение выросло, ведь тогда вырастет и энергия? Так и есть, мы же сообщили системе механическую энергию, преодолевая кулоновское притяжение обкладок. Собственно, в этом и фишка электризации трением – зацепить электроны на расстоянии порядка размеров атомов и оттащить на макроскопическое расстояние, тем самым повысив напряжение с нескольких вольт (а таково напряжение в химических связях) до десятков и сотен тысяч вольт. Теперь понятно, почему синтетическая кофта бьется током не когда ее носишь, а только когда ее снимаешь? Стоп, а почему не до миллиардов? Дециметр же в миллиард раз больше ангстрема, на котором мы урвали электроны? Да потому что работа по перемещению заряда в электрическом поле равна интегралу Eq по d и это самое E ослабевает с расстояние квадратично. А если бы на всем дециметре между кофтой и носом было такое же поле как внутри молекул, то щелкнул бы по носу и миллиард вольт.

Проверим это явление – повышение напряжения при растягивании конденсатора – экспериментально. Я написал простую программку на Visual Basic для приема данных с нашего контроллера ПМК018 и вывода их на экран. В общем, берем две 200х150 мм пластины текстолита, покрытого с одной стороны фольгой и припаиваем проводки, идущие к измерительному модулю. Затем кладем на одну из них диэлектрик – лист бумаги – и накрываем второй пластиной. Пластины прилегают неплотно, поэтому придавим их сверху корпусом авторучки (если давить рукой, то можно создать помехи).

Схема измерения простая: потенциометр R1 устанавливает напряжение (в нашем случае это 3 вольта), подаваемое на конденсатор, а кнопка S1 служит для того чтобы подавать его на конденсатор, или не подавать.

Итак, нажмем и отпустим кнопку – мы увидим график, показанный слева. Конденсатор быстро разряжается через вход осциллографа. Теперь попробуем во время разряда ослабить давление на пластины – увидим пик напряжения на графике (справа). Это как раз искомый эффект. При этом расстояние между обкладками конденсатора растет, емкость падает и потому конденсатор начинает разряжаться еще быстрее.

Тут я не на шутку задумался.. Кажется, мы на пороге великого изобретения…Ведь если при раздвигании обкладок на них растет напряжение, а заряд остается прежним, то можно ведь взять два конденсатора, на одном раздвигать на них обкладки, а в точке максимального раздвижения передать заряд неподвижному конденсатору. Потом вернуть обкладки на место и повторить то же самое наоборот, раздвигая другой конденсатор. По идее напряжение на обоих конденсаторах будет расти с каждым циклом в определенное число раз. Отличная идея для электрогенератора! Можно будет создать новые конструкции ветряков, турбин и всего такого! Так, прекрасно… для удобства можно разместить все это на двух дисках, вращающихся в противоположные стороны…. ой что же это… тьфу, это же школьная электрофорная машина! 🙁

В качестве генератора она не прижилась, так как неудобно иметь дело с такими напряжениями. Но на наноуровне все может измениться. Магнитные явления в наноструктурах во много раз слабее электрических, а электрические поля там, как мы уже убедились, огромны, поэтому молекулярная электрофорная машина может стать весьма популярной.

Конденсатор как хранитель энергии

Убедиться, что в самом ничтожнейшем конденсаторе хранится энергия очень легко. Для этого нам понадобится прозрачный светодиод красного свечения и источник постоянного тока (батарейка 9 вольт подойдет, но если номинальное напряжение конденсатора позволяет, лучше взять побольше). Опыт заключается в том чтобы зарядить конденсатор, а потом подключить к нему светодиод (не забываем про полярность), и смотреть как он моргнет. В темной комнате видна вспышка даже от конденсаторов в десятки пикофарад. Это каких-нибудь сто миллионов электронов испускают сто миллионов фотонов. Впрочем это не предел, ведь человеческий глаз может замечать куда более слабый свет. Просто я не нашел еще менее ёмких конденсаторов. Если же счет пошел на тысячи микрофарад, пожалейте светодиод, а вместо этого замыкайте конденсатор на металлический предмет чтобы увидеть искру – очевидное свидетельство наличия в конденсаторе энергии.

Энергия заряженного конденсатора ведет себя во многом подобно потенциальной механической энергии — энергии сжатой пружины, поднятого на высоту груза или водонапорного бачка (а энергия катушки индуктивности, наоборот, подобна кинетической). Способность конденсатора накапливать энергию издавна применяется для обеспечения непрерывной работы устройств при кратковременных спадах питающего напряжения – от часов до трамваев.

Конденсатор также используется для накопления «почти вечной» энергии, вырабатываемой тряской, вибрацией, звуком, детектированием радиоволн или излучения электросетей. Мало-помалу накопленная энергия от таких слабых источников в течение долгого времени позволяет затем некоторое время работать беспроводным датчикам и другим электронным приборам. На этом принципе основана вечная «пальчиковая» батарейка для устройств со скромным энергопотреблением (вроде ТВ пультов). В ее корпусе находится конденсатор емкостью 500 миллифарад и генератор, подпитывающий его при колебаниях с частотой 4–8 герц дармовой мощностью от 10 до 180 милливатт. Разрабатываются генераторы на основе пьезоэлектрических нанопроводков, способные направлять в конденсатор энергию таких слабых вибраций, как биения сердца, удары подошв обуви по земле, и вибрации технического оборудования.

Еще один источник дармовой энергии – торможение. Обычно при торможении транспорта энергия переходит в тепло, а ведь ее можно сохранить и затем использовать при разгоне. Особенно остро стоит эта проблема для общественного транспорта, который тормозит и разгоняется у каждой остановки, что ведет к значительному расходу топлива и загрязнению атмосферы выхлопами. В Саратовской области в 2010 г. фирмой «Элтон» создан «Экобус» — экспериментальная маршрутка с необычными электродвигателями «мотор-колесо» и суперконденсаторами – накопителями энергии торможения, снижающими энергопотребление на 40%. Там применены материалы, разработанные в проекте «Энергия-Буран», в частности, углеродная фольга. Вообще, благодаря созданной еще в СССР научной школе, Россия является одним из мировых лидеров в сфере разработки и производства электрохимических конденсаторов. Например, продукция «Элтона» экспортируется за рубеж с 1998 года, а недавно в США началось производство этих изделий по лицензии российской компании.

Емкость одного современного конденсатора (2 фарады, фото слева) в тысячи раз превышает емкость всего земного шара. Они способны хранить электрический заряд в 40 Кулон!

Используются они, как правило, в автомобильных аудиосистемах, чтобы снизить пиковую нагрузку на электропроводку автомобиля (в моменты мощных бас-ударов) и за счёт огромной ёмкости конденсатора подавить все высокочастотные помехи в бортовой сети.

А вот этот советский «дедушкин сундучок» для электронов (фото справа) не столь емок, но зато выдерживает напряжение в 40.000 вольт (обратите внимание на фарфоровые чашечки, защищающие все эти вольты от пробоя на корпус конденсатора). Это очень удобно для «электромагнитной бомбы», в которой конденсатор разряжается на медную трубочку, которая в тот же момент сжимается снаружи взрывом. Получается очень мощный электромагнитный импульс, выводящий из строя радиоаппаратуру. Кстати, при ядерном взрыве, в отличие от обычного, тоже выделяется электромагнитный импульс, что еще раз подчеркивает сходство уранового ядра с конденсатором. Кстати, такой конденсатор вполне можно напрямую зарядить статическим электричеством от расчески, только конечно заряжать до полного напряжения придется долго. Зато можно будет повторить печальный опыт ван Мушенброка в очень усугубленном варианте.

Если просто потереть об волосы авторучку (расческу, воздушный шарик, синтетическое белье и т.п.), то светодиод от нее гореть не будет. Это потому, что избыточные (отнятые у волос) электроны заневолены каждый в своей точке на поверхности пластика. Поэтому если даже мы и попадем выводом светодиода в какой-то электрон, другие не смогут устремиться за ним и создать нужный для заметного невооруженным глазом свечения светодиода ток. Другое дело, если перенести заряды с авторучки в конденсатор. Для этого возьмем конденсатор за один вывод и буде тереть авторучку по очереди то о волосы, то о свободный вывод конденсатора. Почему именно тереть? Чтобы по максимуму собрать урожай электронов со всей поверхности ручки! Несколько раз повторим этот цикл и подключим к конденсатору светодиод. Он моргнет, причем только при соблюдении полярности. Так конденсатор стал мостиком между мирами «статического» и «обычного» электричества 🙂

Я взял для этого опыта высоковольтный конденсатор, опасаясь пробоя низковольтного, но оказалось, что это излишняя предосторожность. При ограниченной подаче заряда напряжение на конденсаторе может быть намного меньше напряжения источника питания. Конденсатор может преобразовывать большое напряжение в малое. Например, статическое высоковольтное электричество – в обычное. В самом деле, есть ли разница: зарядить конденсатор одним микрокулоном от источнка напряжением 1 В или 1000 В? Если этот конденсатор настолько емкий, что от заряда в 1 мкКл на нем напряжение не повысится выше напряжения одновольтового источника питания (т.е. емкость его выше 1 мкф), то разницы нет. Просто если не ограничивать принудительно кулоны, то от высоковольного источника их захочет прибежать больше. Да и тепловая мощность, выделившаяся на выводах конденсатора будет больше (а количество теплоты то же, просто оно быстрее выделится, оттого и мощность больше).

В общем, видимо, для этого опыта годится любой конденсатор емкостью не более 100 нф. Можно и более, но понадобится долго его заряжать чтобы получить достаточное для светодиода напряжение. Зато, если токи утечки в конденсаторе невелики, светодиод будет гореть дольше. Можно подумать о создании на этом принципе устройства подзарядки сотового телефона от трения его об волосы во время разговора 🙂

Отличным высоковольтным конденсатором является отвертка. При этом ручка ее служит диэлектриком, а металлический стержень и рука человека – обкладками. Мы знаем, что натертая об волосы авторучка притягивает клочки бумаги. Если натирать об волосы отвертку то ничего не выйдет – металл не обладает способностью отнимать электроны у белков – она как не притягивала бумажки, так и не стала. Но если как в предыдущем опыте тереть ее заряженной авторучкой – отвертка, вследствие своей малой емкости, быстро заряжается до высокого напряжения и бумажки начинают к ней притягиваться.

Светится от отвертки и светодиод. На фото нереально поймать краткий миг его вспышки. Но — вспомним свойства экспоненты — угасание-то вспышки длится долго (по меркам затвора фотоаппарата). И вот мы стали свидетелями уникального лингвистико-оптико-математического явления: экспонента экспонировала-таки матрицу фотоаппарата!

Впрочем, к чему такие сложности — есть же видеосъемка. На ней видно, что вспыхивает светодиод довольно ярко:

Когда конденсаторы заряжают до высоких напряжений, начинает играть свою роль краевой эффект, состоящий в следующем. Если диэлектрик на воздухе поместить между обкладками и приложить к ним постепенно повышающееся напряжение, то при некотором значении напряжения на краю обкладки возникает тихий разряд, обнаруживаемый по характерному шуму и свечению в темноте. Величина критического напряжения зависит от толщины обкладки, остроты края, рода и толщины диэлектрика и пр. Чем диэлектрик толще, тем выше кр. Например, чем диэлектрическая постоянная диэлектрика выше, тем оно ниже. Для уменьшения краевого эффекта края обкладки заделывают в диэлектрик с высокой электрической прочностью, утолщают диэлектрик прокладку на краях, закругляют края обкладок, создают на краю обкладок зону с постепенно падающим напряжением за счет изготовления краев обкладок из материала с высоким сопротивлением, уменьшением напряжения, приходящегося на один конденсатор путем разбивки его на несколько последовательно включенных.

Вот почему отцы-основатели электростатики любили чтобы на конце электродов были шарики. Это, оказывается, не дизайнерская фишка, а способ максимально уменьшить стекание заряда в воздух. Дальше уже некуда. Если кривизну какого-то участка на поверхности шарика еще уменьшить,то неизбежно возрастет кривизна соседних участков. Да и тут по-видимому в наших электростатических делах важна не средняя а максимальная кривизна поверхности, которая минимальна, конечно у шарика.

Хм.. но если емкость тела это способность накапливать заряд, то она, наверное, весьма различна для положительных и отрицательных зарядов…. Представим себе сферический конденсатор в вакууме… От души зарядим его отрицательно, не жалея электростанций и гигаватт-часов (вот чем хорош мысленный эксперимент!)… но в какой-то момент избыточных электронов станет на этом шаре так много, что они попросту начнут разлетаться по всему вакууму, лишь бы не находиться в такой электроотрицательной тесноте. А вот с положительным зарядом такого не произойдет – электроны, как бы их мало не осталось, никуда из кристаллической решетки конденсатора не улетят.
Что же получается, положительная емкость заведомо намного больше отрицательной? Нет! Потому что электроны там вообще-то были не для нашего баловства, а для соединения атомов, и без сколь-нибудь заметной их доли, кулоновское отталкивание положительных ионов кристаллической решетки мгновенно разнесет в пыль самый бронированный конденсатор 🙂

На самом же деле, без вторичной обкладки, емкость «уединенных половинок» конденсатора очень мала: электроемкость уединенного куска провода диаметром 2 мм и длиной 1 м равна приблизительно 10 пФ, а всего земного шара – 700 мкф.

Можно построить абсолютный эталон емкости, рассчитав его емкость по физическим формулам исходя из точных измерений размеров обкладок. Так и сделаны самые точные конденсаторы в нашей стране, которые находятся в двух местах. Государственный эталон ГЭТ 107-77 находится в ФГУП СНИИМ и состоит из 4-х безопорных коаксиально-цилиндрических конденсаторов, емкость которых рассчитывается с высокой точностью через скорость света и единицы длины и частоты, а также высокочастотного емкостного компаратора, позволяющего сравнивать емкости приносимых на поверку конденсаторов с эталоном (10 пф) с погрешностью менее 0,01% в диапазоне частот 1-100 МГц (фото слева).

Эталон ГЭТ 25-79 (фото справа), находящийся в ФГУП ВНИИМ им. Д.И. Менделеева содержит расчетный конденсатор и интерферометр в вакуумном блоке, емкостный трансформаторный мост в комплекте с мерами емкости и термостатом и источники излучения со стабилизированной длиной волны. В основу эталона положен метод определения приращений емкости системы перекрестных электродов расчетного конденсатора при изменении длины электродов на заданное количество длин волн высокостабильного светового излучения. Это обеспечивает поддержание точного значения емкости 0,2 пф с точностью выше 0,00005 %

И вот результаты эксперимента. Обратите внимание на то какая красивая и гладкая получилась экспонента. Она ведь не математически рассчитана компьютером, а непосредственно измерена из самой природы. Благодаря координатной сетке на экране видно, что точно соблюдается свойство экспоненты — через равные промежутки времени уменьшаться в равное количество раз (я даже линейкой мерил на экране 🙂 Таким образом, мы видим, что физические формулы вполне адекватно отражают окружающую нас реальность.

В силовой электротехнике первым в мире применил конденсатор Павел Николаевич Яблочков в 1877 г. Он упростил и вместе с тем усовершенствовал конденсаторы Ломоносова, заменив дробь и фольгу жидкостью, и соединив банки параллельно. Ему принадлежит не только изобретение инновационных дуговых ламп, покоривших Европу, но и ряд патентов, связанных с конденсаторами. Попробуем собрать конденсатор Яблочкова, используя подсоленную воду в качестве проводящей жидкости, а в качестве банки – стеклянную банку из по овощей. Получилась емкость 0,442 нф. Заменим банку полиэтиленовым пакетом, имеющим большую площадь и во много раз меньшую толщину – емкость вырастет до 85,7 нф. (Сначала наполним пакет водой и проверим, нет ли токов утечки!) Конденсатор работает – даже позволяет моргнуть светодиодом! Он также успешно выполняет свои функции в электронных схемах (я попробовал его включить в генератор вместо обычного конденсатора — все работает).

Металлические обкладки должны возможно плотно прилегать к диэлектрику, причем надо избегать введения между обкладкой и диэлектриком клеящего вещества, которое вызовет добавочные потери на переменном токе. Поэтому теперь в качестве обкладок применяют главным образом металл, химически или механически осажденный на диэлектрик (стекло) или плотно припрессованный к нему (слюда).

Можно вместо слюды использовать кучу разных диэлектриков, каких угодно. Измерения (для диэлектриков равной толщины) показали, что у воздуха ε самое маленькое, у фторопласта побольше, у силикона еще больше, а у слюды даже еще больше, а у цирконат-титаната свинца оно просто огромно. Именно так по науке и должно быть – ведь во фторопласте электроны, можно сказать, намертво прикованы фтороуглеродными цепями и могут лишь чуть-чуть отклониться – там даже с атома на атом электрону некуда перескочить.

Вы можете сами провести такие опыты с веществами, имеющими разную диэлектрическую проницаемость. Как вы думаете, что имеет большую диэлектрическую проницаемость, дистиллированная вода или масло? Соль или сахар? Парафин или мыло? Почему? Диэлектрическая проницаемость зависит много от чего… про нее можно было бы написать целую книгу.

Нет, не все! Через неделю будет продолжение! 🙂

Farad

(Архив пионерской мудрости)

Страшная история из нефильма ужасов

Конденсатор является одним из главных элементов в блоке питания импульсных лазеров. Высоковольтный конденсатор используется для питания импульсных ламп-вспышек, а также для накачки импульсных газоразрядных лазеров. Параметры конденсатора выбираются в зависимости от конкретного типа лазера. Определяющими являются такие величины как емкость, рабочее напряжение, волновое сопротивление и собственная индуктивность конденсатора. От емкости и рабочего напряжения конденсатора зависит энергия накачки. Энергия конденсатора рассчитывается по простой формуле

От волнового сопротивления зависит величина тока, который будет проходить при разряде конденсатора через малую нагрузку. Чем меньше в олновое сопротивление конденсатора, тем выше ток. В олновое сопротивление рассчитывается по формуле

От собственной индуктивности конденсатора зависит быстрота передачи энергии конденсатора в нагрузку. Чем меньше индуктивность конденсатора, тем выше крутизна фронта импульса накачки. Откуда в конденсаторе индуктивность? Дело в том, что обкладки конденсатора представляют собой проводник тока, а проводник, через который протекает ток, имеет индуктивность. Даже если конденсатор состоит лишь из двух обкладок, реальная схема конденсатора соответствует рисунку ниже.

Это классический колебательный контур с активным сопротивлением R, которое зависит от диэлектрика между обкладками конденсатора и удельного сопротивления всех токоведущих элементов конденсатора. Таким образом, заряд и разряд конденсатора происходит не мгновенно, а имеет колебательный характер. Частота колебаний определяется формулой Томпсона, из которой и вычисляется собственная индуктивность конденсатора.

formula tompsona

Разумеется, чем выше энергия конденсатора, тем больше мощность накачки. Однако с увеличением емкости конденсатора возрастает и время импульса накачки. Если длительность накачки не имеет принципиального значения, то для работы лазера подойдут высоковольтные электролитические конденсаторы. Такие конденсаторы можно использовать, например, для накачки рубинового или неодимового лазера. Конечно, проблематично раздобыть кондер, имеющий 1000 мкФ при рабочем напряжении 3 кВ. Но эта проблема легко решается, если использовать банк конденсаторов. При последовательном соединении отдельных конденсаторов суммарное напряжение зарядки возрастает, а емкость можно увеличить параллельным подключением конденсаторов. В радиотехнических магазинах можно купить электролитические конденсаторы, имеющие, например, 150 мкФ х 450 В.

ehlektrolit konder

Из таких конденсаторов можно составить банк на любую емкость и рабочее напряжение.
На рисунке ниже показан пример банка конденсаторов, эквивалентный одному конденсатору на 30 мкФ х 2 кВ.

bank konderov

konder murata

80 руб/шт, все удовольствие обойдется любителю минимум 8 000 руб. Так еще нужно спаять из кучи конденсаторов единый банк.
Через Интернет можно приобрести конденсаторы типа КВИ-3, которые также подходят для накачки лазеров, но их цена будет еще дороже (

kvi3

Также через Интернет приобретаются конденсаторы типа КПИМ, которые вполне подойдут для накачки лазера на красителе.

foto kpim

Как видно из формулы, для повышения емкости конденсатора нужно уменьшать толщину диэлектрика и повышать площадь обкладок конденсатора. Уменьшать толщину диэлектрика можно до определенного предела, который зависит от диэлектрической прочности материала диэлектрика. Ниже этого предела произойдет пробой диэлектрика и конденсатор можно выбрасывать. Повышение площади обкладок приводит к увеличению размеров конденсатора. Для компактности конденсатора его обкладки либо сворачиваются в рулон (рулонная технология), либо собираются в пакет (пакетная технология).

Под рулонной технологией изготовления конденсатора понимается способ компоновки обкладок конденсатора, когда длинные полоски обкладок сворачиваются в рулон, тем самым, уменьшая размеры конденсатора. Схематически такой конденсатор является полосковой линией, показанной на рисунке ниже.

rulon skhema

Для изготовления конденсатора понадобится полиэтиленовая пленка, пищевая алюминиевая фольга, полоски жести от консервной банки (например, «сгущенное молоко»), скотч-лента. Полиэтиленовую пленку можно купить на строительном рынке или в магазине «Хозтовары». Лучше брать самую толстую пленку (

5 кВ.
При толщине пленки 200 мкм предельное рабочее напряжение конденсатора составит

10 кВ. Для повышения рабочего напряжения нужно просто использовать несколько слоев пленки, наложенных один на другой.
Изготавливать конденсатор будем по схеме рисунка 3 (см. выше).

Каждая из обкладок конденсатора будет помещаться в свой конверт из полиэтиленовой пленки. Конверт представляет собой сложенную пополам полоску полиэтиленовой пленки произвольных размеров. Чем больше будет длина полоски, тем выше возможная емкость конденсатора. Ширина полоски делается несколько больше ширины обкладок конденсатора с тем, чтобы предотвратить возникновение разряда по воздуху между обкладками конденсатора.

rulon 0

Электроды конденсатора вырезаются из консервной жести в виде прямоугольной полоски шириной

1 см. Длина жестяной полоски произвольная, но не меньше ширины полиэтиленовой пленки. Для предотвращения коронных разрядов концы жестяной полоски округляются напильником (рис.7 ниже). Для снижения активного сопротивления жестяная полоска обворачивается несколькими слоями алюминиевой фольги (рис.8 ниже).
Для предотвращения возникновения искрового разряда между электродами конденсатора полоска жести с одного конца обворачивается несколькими слоями полиэтиленовой пленки, которая фиксируется скотч-лентой (рис.9 ниже).

rulon ehlektrod

Обкладки конденсатора вырезаются в виде прямоугольной полоски из алюминиевой фольги. Размеры обкладки делаются такими, чтобы она была несколько меньше размеров полиэтиленового конверта. Концы алюминиевой полоски округляются ножницами с целью предотвращения возникновения коронного разряда.
Электрод фиксируется на обкладке скотч-лентой как показано на рисунке ниже.

rulon 1

Обкладка конденсатора помещается на полиэтиленовую пленку так, как показано на рисунке ниже.

rulon 2

Затем полиэтиленовая пленка складывается пополам, как показано на рисунке ниже.

rulon 3

Таким же способом подготавливается вторая обкладка конденсатора.
Теперь можно сворачивать полоски в рулон. Если полиэтиленовые полоски очень длинные, то сворачивать рулон проще на полу комнаты.
Один конверт полиэтиленовой пленки с обкладкой конденсатора расстилается на полу и сверху на него накладывается второй конверт с обкладкой конденсатора так, чтобы обе обкладки были параллельно друг другу (рисунок ниже).

rulon 4

Рулон сворачивается, начиная от электродов, как показано на рисунке ниже.

rulon 5

Поскольку алюминиевая фольга в полиэтиленовом конверте не закреплена, при сворачивании рулона нужно следить, чтобы обкладки конденсатора оставались параллельны друг другу и не вылезали за пределы полиэтиленовой пленки. Свернутый рулон как можно туже стягивается скотч-лентой, которая служит не только стяжкой, но и фиксирует рулон, предотвращая разматывание полиэтиленовой пленки.
Изготовленный конденсатор показан на рисунке ниже.

rulon 6

Под пакетной технологией изготовления конденсатора понимается способ компоновки обкладок конденсатора, когда короткие полоски обкладок накладываются друг на друга, образуя пакет.

Схематически такой конденсатор показан на рисунке ниже.

paket skhema

getinaks konder

18 кВ/мм. Это значит, что самый распространенный в продаже фольгированный лист гетинакса толщиной 1,5 мм можно зарядить до

20 кВ. При большем зарядном напряжении возрастает вероятность пробоя гетинакса. Кроме того, себестоимость изготовления такого самодельного конденсатора будет очень высокой, если нужна большая емкость.
Более дешевым, но трудоемким будет изготовление высоковольтного конденсатора с использованием полиэтиленовой пленки и пищевой алюминиевой фольги. Ниже изложен вариант методики изготовления конденсатора по пакетной технологии.

paket 1

Из полиэтиленовой пленки вырезается полоска, размеры которой несколько больше размеров обкладки конденсатора. На пленке с помощью скотч-ленты фиксируется полоска алюминиевой фольги (рисунок ниже).

paket 2

Затем пленка складывается пополам, образуя слой диэлектрика с двух сторон обкладки конденсатора (рисунок ниже).

paket 3

Так же изготавливается обкладка конденсатора противоположной полярности. Затем обкладки накладываются друг на друга (рисунок ниже).

paket 4

В принципе, конденсатор готов. Нужно только прижать обкладки друг к другу с помощью диэлектрических пластин и стянуть весь пакет. Однако емкость конденсатора будет незначительной. Для увеличения емкости нужно увеличивать число обкладок конденсатора. Поперечный разрез конденсатора с несколькими обкладками показан на рисунке ниже.

paket 5

…в элегантную тумбочку для интерьера комнаты.

И чем толще пакет конденсаторных обкладок, тем больше нужно прилагать усилий, чтобы стянуть его. Облегчить стягивание пакета помогут толстые диэлектрические пластины, между которыми помещается весь пакет обкладок.

Как вариант на рисунке ниже показаны две пластины из оргстекла толщиной 5 мм, которые будут служить и корпусом конденсатора, и сжимать пакет обкладок. На верхней пластине по всей длине приклеена межэлектродная разделительная перегородка с пазами для пластиковых стяжек.

paket orgsteklo

Весь пакет обкладок помещается на нижнюю диэлектрическую пластину, а верхняя пластина накладывается на пакет. Затем как можно сильнее верхняя пластина прижимается (руками, ногами, прессом и т. д.) к нижней. Фиксация стянутых пластин осуществляется пластиковыми стяжками.
Готовый стянутый пакет обкладок конденсатора показан на рисунке ниже.

paket stjazhka

После стягивания и фиксации пакета можно закреплять контактные полоски обкладок конденсатора. Схема крепления контактных полосок показана на рисунке ниже.

paket 7

Достоинством «сухого» конденсатора, изготовленного по изложенной выше рулонной или пакетной технологии, является малая величина утечки электрического заряда, что важно при работе конденсатора в высокочастотных схемах. Однако такой конденсатор имеет и существенный недостаток, а именно наличие воздуха между обкладками. Каким бы сильным не было сжатие обкладок, воздух между ними будет всегда. Само по себе наличие воздуха никоим образом не сказывается на энергетических характеристиках конденсатора. «Сухие» конденсаторы вполне можно применять в качестве накопительных, которые служат для сглаживания пульсаций выпрямленного напряжения до 1 кВ. Однако с ростом зарядного напряжения воздух начинает ионизироваться, что проявляется в характерном шипении конденсатора при его подключении к источнику напряжения > 10 кВ. Шипение вызвано возникновением коронных разрядов, которые в конечном итоге приводят к пробою диэлектрика между обкладками конденсатора. А если использовать конденсатор в режиме коротких замыканий, что характерно для работы импульсного конденсатора, то проявление коронных разрядов будет максимальным. Даже при идеальной поверхности пленки между обкладками конденсатора коронные разряды будут возникать по периметру кромки алюминиевой фольги в момент быстрого разряда конденсатора, как показано на рисунке ниже.

skhema razrjada korona

Свечение коронных разрядов в самодельном конденсаторе можно увидеть в затемненном помещении.

По причине возникновения коронных разрядов коммерческие высоковольтные конденсаторы всегда погружаются в жидкий диэлектрик, который, во-первых, имеет большую диэлектрическую прочность, чем воздух, а во-вторых, повышает емкость конденсатора, поскольку диэлектрическая проницаемость любого жидкого диэлектрика выше, чем у воздуха. Более того, высоковольтные конденсаторы с рабочим напряжением в десятки киловольт никогда не делаются в виде единого рулона или отдельного пакета. Если требуется изготовить высоковольтный конденсатор, то он набирается из нескольких секций (рулонов или пакетов), которые соединяются между собой параллельно для увеличения емкости и последовательно для увеличения рабочего напряжения. Причем рабочее напряжение каждой секции не превышает 10 кВ. Все секции собранного конденсатора размещаются в прочном корпусе и заливаются жидким диэлектриком.
В качестве жидкого диэлектрика применяют масло, которое может быть либо минеральным (нефтяное), либо растительное (касторовое), либо синтетическое (например, силиконовое). Каждое из масел имеет свои плюсы и минусы, не имеющие особого значения для самодельных конструкций. Если есть желание погружать свой самодельный конденсатор в масло, то совсем не обязательно затариваться, например, касторовым маслом, которое можно купить в аптеке. Вполне подойдет пищевое растительное масло типа «Олейна», «Милора» и т.д, которое обойдется дешевле. Например, рулонный конденсатор можно сунуть в стеклянную банку и залить ее маслом (рисунок ниже).

rulon v banke

Заманчиво использовать в качестве жидкого диэлектрика глицерин (ε ≈ 40) или дистиллированную воду (ε ≈ 80). Эти жидкости на порядок повышают емкость конденсатора. К сожалению, и глицерин, и вода имеют относительно низкое удельное сопротивление, что приведет к шунтированию источника высокого напряжения, имеющего высокоомный выход (например, диодно-конденсаторный умножитель напряжения). Проще говоря, конденсатор замкнет блок питания, и никакого высокого напряжения не будет. Тем не менее, глицерин и воду с успехом применяют в импульсных высоковольтных конденсаторах. Фишка в том, что конденсатор заряжается не от источника постоянного напряжения, а от генератора импульсных напряжений (ГИН).

Конструкция импульсного конденсатора представляет собой коаксиальную линию, составленную из двух дюралюминиевых трубок, между которыми заливается либо глицерин, либо дистиллированная вода.

koaksial konder

Жидкий диэлектрик заливается в конденсатор через отверстие, проделанное на конце внешней трубки.

Соотношение диаметров дюралевых трубок будет определять емкость конденсатора в соответствии с формулой емкости цилиндрического конденсатора:

formula emkosti koaksial

Схема подключения импульсного коаксиального конденсатора показана на рисунке ниже.

skhema gin koaksial kon

КАК СДЕЛАТЬ КОНДЕНСАТОР ПОСТОЯННОЙ ЕМКОСТИ

Сделать конденсатор постоянной емкости нетрудно. Для этого потребуется станиолевая фольга (оловянная бумага), парафинированная бумага и кусочки жести. Станиолевую фольгу можно взять от оберток конфет или шоколада, а парафинированную бумагу можно сделать самим.

Для этого берут тонкую папиросную бумагу и нарезают ее полосками шириной 50 мм и длиной 200-300 мм.

Полоски погружают на 2-3 минуты в расплавленный парафин (не кипящий). Как только их вынут, парафин тотчас застывает. После этого его нужно осторожно соскоблить тупой стороной ножа, чтобы не порвать бумаги. Получаются парафинированные листы.

Рис. 111. Самодельный конденсатор постоянной емкости.

Для конденсатора парафинированную бумагу складывают буквой «И», как показано на рисунке 111, в промежутки, с той и с другой стороны «гармошки», вкладывают станиолевые листки размером 45X30 мм.

Когда все листки будут вставлены, «гармошку» складывают и проглаживают подогретым утюгом. Оставшиеся с наружной стороны станиолевые концы соединяются между собой.

Сделать это лучше так: из плотного картона вырезают две пластинки, накладывают их с обеих сторон «гармошки» и зажимают двумя обоймочками, сделанными из жести или латуни. К обоймочкам нужно припаять проводнички, с помощью которых конденсатор припаивается при монтаже.

При десяти станиолевых листочках емкость конденсатора будет примерно равна 1 000 пф.

Если количество листочков увеличить в два раза, емкость конденсатора также увеличится примерно в два раза.

Таким способом можно делать конденсаторы емкостью от 100 до 5 т. пф.

Конденсаторы большой емкости от 5 т. пф до 0,2 мкф делаются несколько иначе. Для их изготовления потре* буется старый бумажный микрофарадный конденсатор.

Бумажный конденсатор представляет собой рулон, свернутый из ленты, состоящей из двух полос парафинированной бумаги и проложенных между ними двух полос станиолевой фольги.

Для того чтобы определить длину полоски, нужную

нам для конденсатора, пользуются формулой:

Изготовляют конденсатор следующим образом; от рулона микрофарадного конденсатора (рис. 112) отматывают ленту нужной нам длины (все четыре полосы). Чтобы обкладки конденсатора не соединились между собой, з начале и в конце ленты станиолевую фольгу обрезают на 10 мм больше, чем бумагу.

kak sd4

112 Самодельный конденсатор большой емкости.

Перед тем как свернуть ленту, от каждой полоски

К этим проводникам с внутренней стороны бумажной гильзы припаивают выводы от обкладок конденсатора, как это показано на рисунке.

Готовый конденсатор заливается парафином.

Если Вы замыслили построить лазер, ускорительную трубку, генератор электромагнитных помех или что-нибудь еще в этом роде, то рано или поздно Вы столкнетесь с необходимостью использовать малоиндуктивный высоковольтный конденсатор, способный развивать нужные Вам Гигаватты мощности.
В принципе можно попытаться обойтись использованием покупного конденсатора и что-то близкое к тому, что Вам нужно даже имеется в продаже. Это керамические конденсаторы типа КВИ-3, К15-4, ряд марок фирм Murata и ТDK, ну и конечно зверь Maxwell 37661 (последний, правда, масляного типа)

Использование покупных конденсаторов, однако имеет свои недостатки.

По этому гайду мы будем учиться делать самодельный малоиндуктивный высоковольтный
конденсатор на примере платы, предназначенной для использования в качестве драйвера
лампового лазера на красителях. Тем не менее принцип является общим и с его
использованием Вы сможете строить конденсаторы в частности (но не ограничиваясь)
даже для питания азотных лазеров.

I. РЕСУРСЫ

16426552595 a48d14f75b

II. СБОРКА

Когда проектируется устройство, требующее малоиндуктивного питания, думать надо о конструкции в целом, а не отдельно о конденсаторах, отдельно о (например) лазерной головке и т.д. В противном случае токоведущие шины сведут на нет все преимущества малоиндуктивного дизайна конденсаторов. Обычно конденсаторы являются органичной составной частью подобных устройств и именно поэтому примером будет служить плата драйвера лазера на красителях.
Блажен тот самодельщик, вокруг которого валяются листы стеклопластика и оргстекла. Мне же приходится использовать кухонные разделочные доски, продающиеся в магазине.
Возьмите кусок пластика и обрежьте в размер будущей схемы.
16240658587 d09093f0e4 n16424798501 9ab9e300fa n

Определившись с размерами будущих конденсаторов отрежьте кусочки алюминиевого уголка по размерам будущих контакторов. Уголки тщательно обработайте по всем правилам высоковольтной техники (скруглите все углы и затупите все острия).
16238916758 cc00f4c9b2 n

Закрепите выводы будущих конденсаторов на получающейся «печатной плате».
16238919588 bfcc1e4112 n16240659987 8d92c0b381 n

Смонтируйте те части схемы, которые, если их не собрать сейчас, потом могут помешать сборке конденсаторов. В нашем случае это соединительные шины и разрядник.
15806515433 790550c434 n

обратите внимание, малая индуктивность при установке разрядника принесена в жертву удобству регулировки. В данном случае это оправдано, поскольку собственная индуктивность (длинной и тонкой) лампы заметно больше индуктивности цепи разрядника, а кроме того лампа по всем законам черного тела не будет светить быстрее чем sigma*T^4, какой бы быстрой цепь питания ни была. Укоротить можно только фронт, но не весь импульс. С другой стороны, при конструировании, например, азотного лазера так вольно крепить разрядник Вы уже не станете.

Следующим этапом надо нарезать фольгу и, возможно, ламинат-пакеты (если только размер конденсатора не предполагает использование полного формата пакета, как в случае накопительного конденсатора на рассматриваемой плате.)
foils

Несмотря на то, что ламинирование в идеале происходит герметично и пробой по закраинам должен быть исключен, не рекомендуется делать закраины (размер d на рисунке) менее чем по 5 мм на каждые 10 кВ рабочего напряжения.
Закраины размером по 15 мм на каждые 10 кВ напряжения обеспечивают более-менее стабильную работу даже без герметизации.
Размер выводов (размер D на рисунке) выбирайте равным предполагаемой толщине стопы будущего конденсатора с некоторым запасом. Углы фольги, естественно, должны быть скруглены.
Начнем с пикового конденсатора. Вот как выглядят заготовки и готовая, заламинированная обкладка:
16400568256 c886d14aa2 n

Для пикового конденсатора взят ламинат толщиной 200 мкм, поскольку за счет «резонансной» зарядки здесь ожидается наброс напряжения под 30 кВ. Заламинируйте необходимое количество обкладок (в нашем случае 20 шт.). Сложите их стопкой (выводами поочередно в разные стороны). У полученной стопки подогните выводы (при необходимости излишки фольги надо обрезать), уложите стопку в гнездо, образованное уголковыми контакторами на плате и прижмие верхней крышкой.
16426549055 44e4e19ecc n16426548375 ca0e082ca1 n
15806508953 b550748924 n16240649967 8b5b5a45ce n

Фетишисты закрепят верхнюю крышку аккуратными болтиками, но можно и просто примотать изолентой. Пиковый конденсатор готов.
16238912408 bcbba7ff36 n

Сборка накопительного конденсатора ничем принципиально не отличается.
Меньше работы ножницами, поскольку используется полный формат А4. Ламинат здесь выбран толщиной 100 мкм, поскольку планируется использовать зарядное напряжение 12 кВ.
Точно так же собираем в стопку, подгибаем выводы и прижимаем крышкой:
15804043364 a29bbab5bf n15806507293 aac33fb995 n
15804042404 cda67ed04c n16238906698 ea6afa3eb1 n

А вот что показыват пиковый конденсатор.
16425617632 f6a5ed21e2 n

Вот, собственно и все. Конденсаторы готовы, тема гайда исчерпана.
Однако, вероятно не терпится опробовать их в деле. Доделываем недостающее части схемы, устанавливаем лампу, подключаем к источнику питания.
Вот как это выглядит.
16424800651 e1164b96ed n16240320919 0238655e3e o

Вот осциллограмма, тока, снятая небольшим колечком провода, непосредственно подключенным к осциллографу и расположенным вблизи контура, питающего лампу. Правда вместо лампы схема была нагружена на шунт.

16239160230 115895a6c0 z

А вот осциллограмма вспышки лампы, снятая фотодиодом ФД-255, направленным на ближайшую стену. Рассеянного света вполне хватает. Правильней даже сказать «более чем.»

16239159960 e63e598893 z

Можно долго ругать плохо получившиеся кондесаторы и искать причину, почему разряд длится более 5 мкс. На самом деле лампа вспышка вываливает кучу мегаватт и даже рассеяным от стен светом загоняет фотодиод в глубокое насыщение. Унесем фотодиод подальше. Вот осциллограмма снятая с 5 метров, когда фотодиод смотрит не точно на лампочку, а чуть в сторону от нее.

15804055274 0f333fae2b z

(ЗЫ) Пришлось добавить еще 30 нФ в главный накопительный конденсатор и действительно хватило. Труба, фотку которой можно найти тут же в разделе «Фотки» заработала даже лучше чем от двухмаксвелльного ГИН»а.

Вообще время разряда в 100 нс отнюдь не предел для описанной технологии создания конденсаторов. Вот фото конденсатора с которым устойчиво работает в режиме сверхизлучения воздушный откачной азотный лазер:
16240646537 8909631229 n

Время его разряда уже за пределами возможностей моего осциллографа, однако то, что азотник с этим конденсатором эффективно генерит уже при 100 мм.рт.ст. позволяет оценить время разряда в 20 нс и менее.

III. ВМЕСТО ЗАКЛЮЧЕНИЯ. БЕЗОПАСНОСТЬ

Маечный конденсатор

Материалы понадобятся те же что и в гайде выше: майларовая пленка(или пакеты для ламинирования), алюминиевая фольга и скотч/изолента.

На схеме ниже обозначены размеры основных зазоров.

Зазоры от краев диэлектрика по 15мм. С той стороны, где выходят контактные полосы обкладок отступ 50мм. Эти отступы сделаны минимально возможными для максимальной емкости при заданных L и D диэлектрика. Обратите внимание, эти зазоры подобраны для 10кВ. (Я сомневаюсь, что имеет смысл делать такой тип конденсатора для более высоких напряжений, поэтому я не буду писать здесь формулы для пересчета отступов и зазоров для других напряжений)

Изготовление

17976234516 98f97966ee n

Маечный конденсатор готов. Можете устанавливать его ваш лазер, ГИН или другой высоковольтный девайс.

Как сделать конденсатор?

hqdefault

hqdefault

hqdefault

Материалы

Для изготовления конденсатора нам понадобится:

Фольга не нуждается в дополнительной подготовке, а вот с помощью трех последних компонентов нам предстоит сделать парафинированную бумагу.

Изготовление

Итак, материалы подготовлены, приступаем к работе:

Мы получили самый простой бытовой конденсатор, при этом стоит отметить, что чем толще и качественнее фольга, тем более высоковольтным он будет. Однако обращаем ваше внимание, сделать в домашних условиях своими руками конденсатор, который выдержит более 50 кВ, лучше не пробовать. «Профессионалы-любители» советуют при желании подобраться к этому значению использовать в качестве диэлектрика пакеты для ламинирования, однако при этом для их нагрева вам понадобится ламинатор.

Источник